

PRODUCTION RESEARCH UPDATES

Moderator

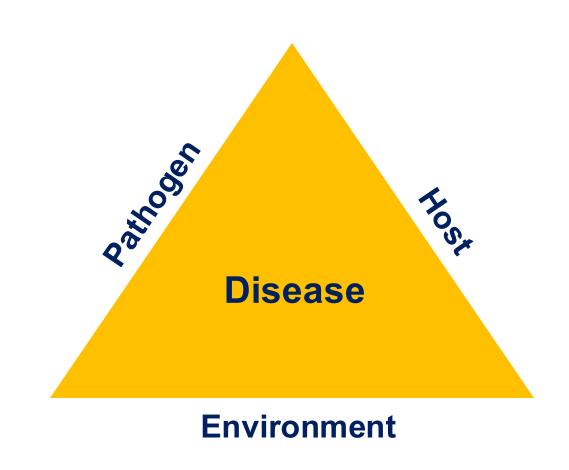
Sebastian Saa, ABC, Ag. Research

Speakers

Andreas Westphal, UC Riverside

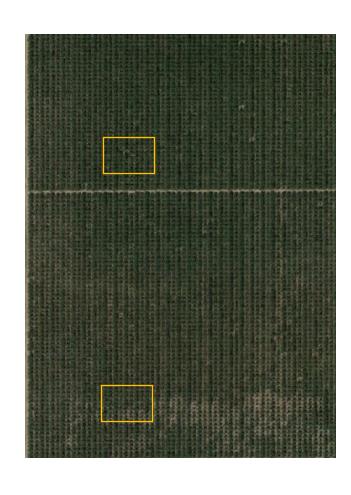
Mohammad Yaghmour, UC ANR

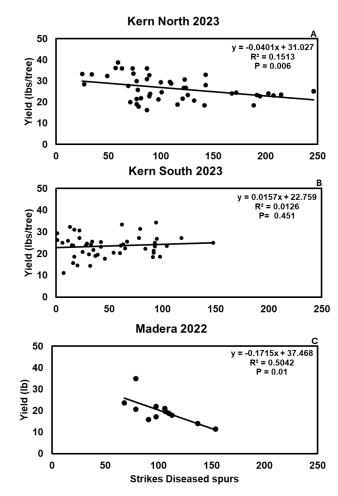
Isaya Kisekka, UC Davis


Roger Duncan, UC ANR

Franz Niederholzer, UC ANR

DISEASE TRIANGLE


SYMPTOMS OF HULL ROT



When the hull is infected and disease progress, leaves near the infected fruit starts to dry and shrivel.

Effect of Hull Rot Incidence on Yield

SIGNS OF HULL ROT

Rhizopus stoloniferSource of inoculum: soil

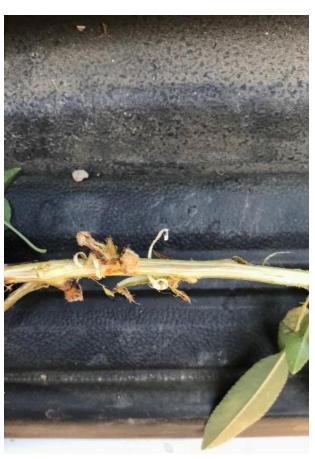
Aspergillus niger
Source of inoculum: soil

Monilinia spp.
Sources of inoculum: Infected almond and stone fruit twigs, fruits, mummies, etc.



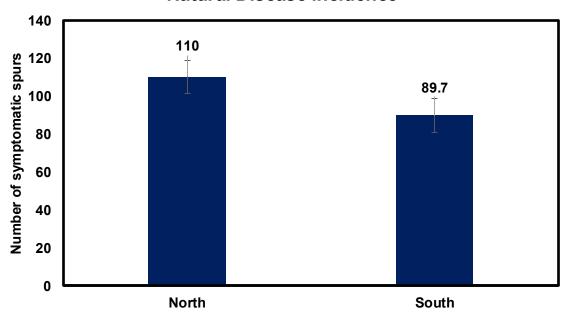
Aspergillus niger and Hull Rot

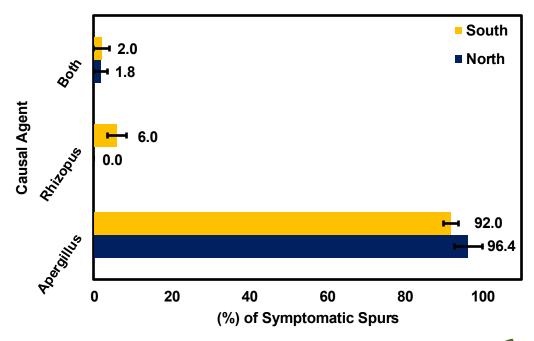
Since 2017, Hull Rot infections observed in almond orchards with flat jet-black spores identified as Aspergillus niger



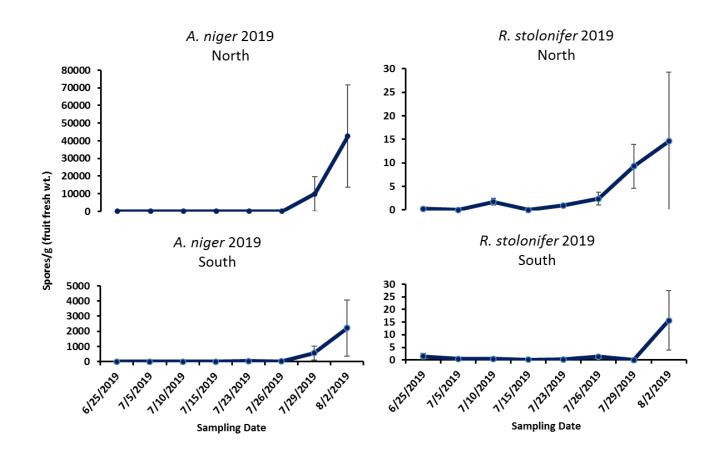
SYMPTOMS AND SIGNS OF HULL ROT

Aspergillus niger




Rhizopus stolonifer

NATURAL INCIDENCE OF HULL ROT 2021


Natural Disease incidence

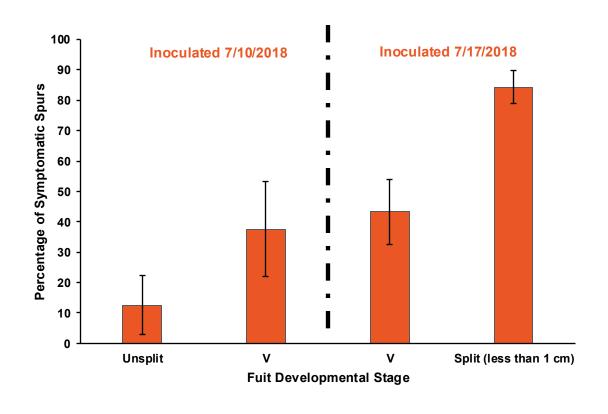
SOURCES OF INOCULUM

FRUIT SUSCEPTIBILITY TO HULL ROT PATHOGEN RHIZOPUS STOLONIFER

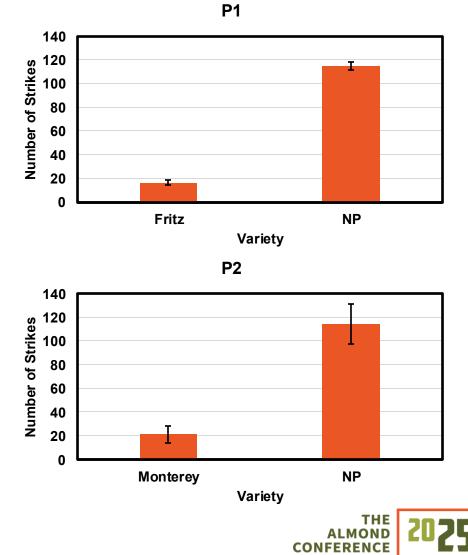
(b1) Initial separation-50% or more of a thin separation line visible

(b2) Deep V, is the most susceptible stage (source: Adaskaveg. 2010)

(b3) Deep V, split-a deep "V" in the suture, which is not yet visibly separated, but which can be squeezed open by pressing both ends of the hull


(c) Split, less than 3/8 inch

FRUIT SUSCEPTIBILITY AT DIFFERENT STAGES



VARIETAL DIFFERENCES

Variety	Strikes / tree	Susceptibility
Nonpareil	>500	Very high
Butte	>200	High
Winters	>200	High
Price	100-200	Medium
Sonora	100-200	Medium
Aldrich	10-100	Low
Wood Colony	10-100	Low
Mission	10-100	Low
Ruby	10-100	Low
Livingston	10-100	Low
Padre	10-100	Low
Fritz	0-10	Very Low
Carmel	0-10	Very Low
Montrey	0-10	Very Low

Source: Doll and Holtz. 2013. Almond Hull Rot – Cultural and Chemical Management

STRATEGIES USED IN IPM

Avoidance

Exclusion:

Quarantine

Pathogen-Free planting material

Eradication

Protection:

Biological Control

Host Resistance

Varietal susceptibility and resistance

Cultural practices

Managing plant nutrition (e.g., nitrogen management for hull rot)

Water management (Important in soil borne diseases, and hull rot)

Chemical control

Fungicides, Fumigation, etc

INTEGRATED HULL ROT MANAGEMENT

Cultural

- Irrigation management using strategic deficit irrigation (SDI)
- Nitrogen management
- Dust Management

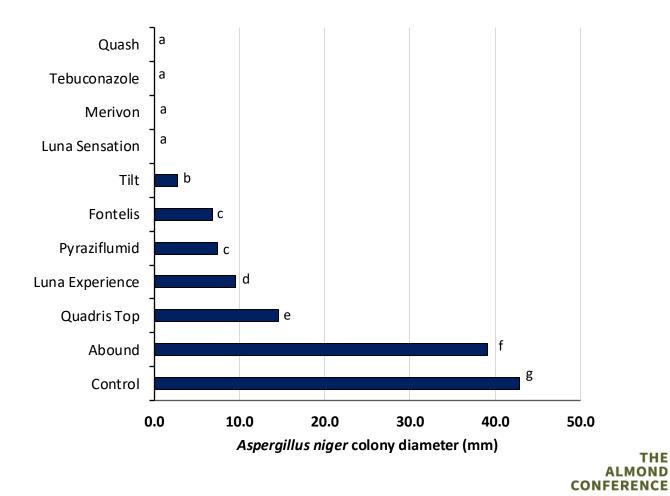
Chemical

- Use of fungicides
- Use of other chemical such as alkaline fertilizers

EFFECT OF FUNGICIDES ON HULL ROT

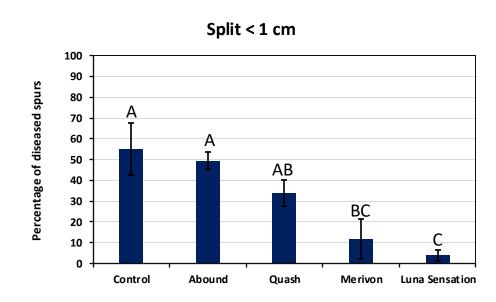
Timing of Chemical Control of Hull Rot

- Hull rot caused by R. stolonifer can be managed by a single application at hullsplit (1-5% hullsplit), timed with the NOW insecticide treatment.
- Hull rot caused by Monilinia spp. is best managed with fungicide applications 3 to 4 weeks before hull split (early June).

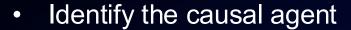

		Bloom		Spring ¹		Summer		
Disease	Dormant	Pink bud	Full bloom	Petal fall	2 weeks	5 weeks	May	June/July
Alternaria	0	0	0	0	0	2	3	3
Anthracnose ²	0	2	3	3	3	3	3	2
Bacterial spot	1	0	2	3	3	2	1	0
brown rot	0	2	3	1	0	0	0	0
Green fruit rot	0	0	3	2	0	0	0	0
Hull rot ⁷	0	0	0	0	0	0	0	3
Leaf blight	0	0	3	2	1	0	0	0
Rust	0	0	0	0	0	3	3	16
Scab ³	2	0	0	2	3	3	1	0
Shot hole ⁴	1 ⁵	1	2	3	3	2	0	0

⁷ Make application at 1 to 5% hull split to manage hull rot caused by *Rhizopus stolonifer*; use earlier June timings for hull rot caused by *M. fructicola*. Apply a second application, mid-way through hull split especially if hull split is progressing slowly.


CHEMICAL CONTROL OF HULL ROT



Aspergillus niger Management 2020



Hull Rot

- Irrigation management.
- Avoid excess nitrogen fertilizer.
- Dust Management
- Chemical control
 - Timing is important: Rhizopus stolonifer at hull split 1-5%. Monilinia spp. 3-4 weeks before hull split.

Thank You!

Mohammad Yaghmour

mayaghmour@ucanr.edu

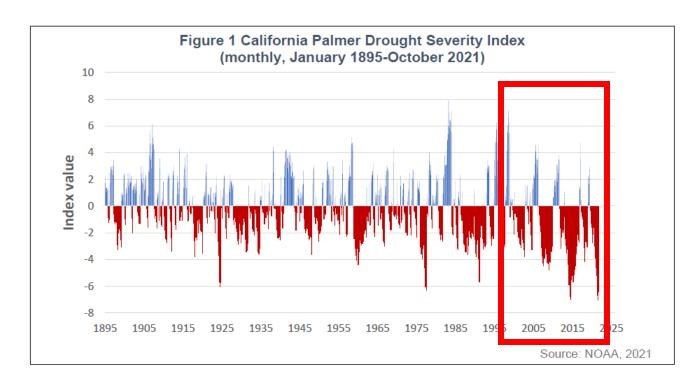
661-646-6211

University of California
Agriculture and Natural Resources

Data Driven Precision Irrigation Management for Almond Orchards

Isaya Kisekka

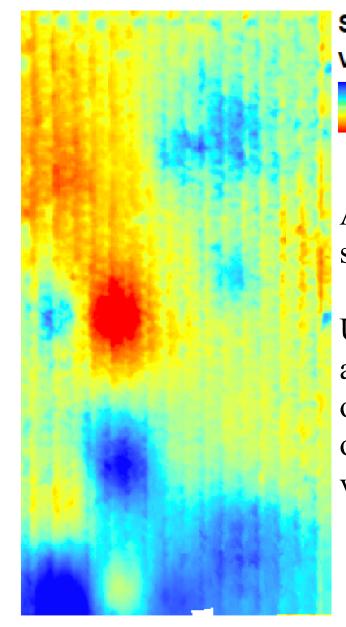
Professor


University of California, Davis

December 11, 2025

Why precision irrigation of almond orchards is needed

- Chronic water scarcity due to repeated drought cycles
- SGMA groundwater pumping limits
- Rising input costs, e.g., pumping/energy costs, labor, fertilizers, etc
- Almond price fluctuations



California's droughts have become more frequent, longer, and more severe

The uniform irrigation problem

- Ignores soil and tree vigor variability
- Over-irrigation in some zones
- Under-irrigation in others
- Exacerbates nut yield and quality variability

SWP (bars below baseline)

Value

High: -2.54895

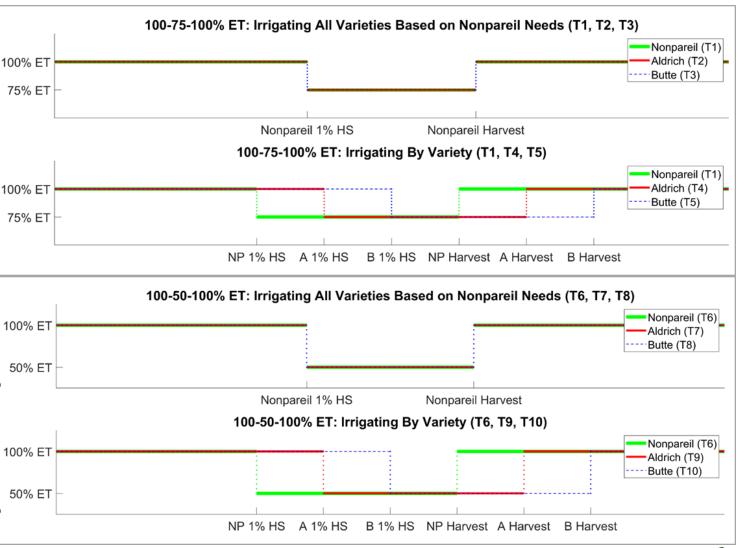
Low: -9.71134

Almond orchard water status expressed SWP

Uniform irrigation will apply the same amount of water over this orchard, ignoring variability in SWP

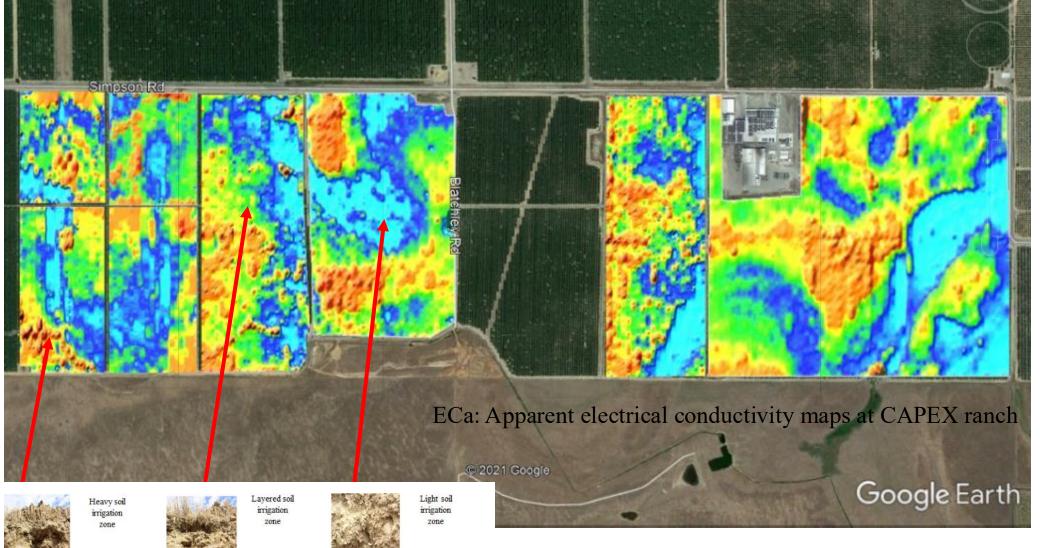
What we did

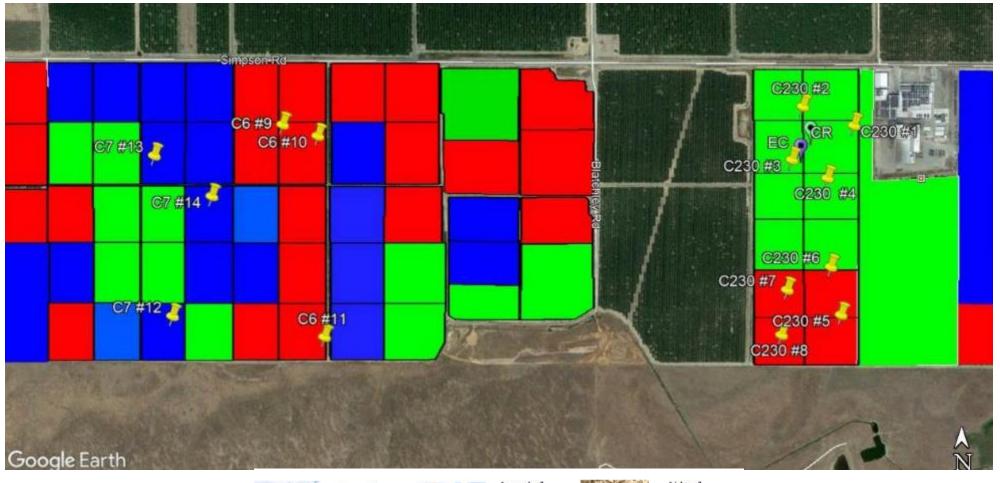
- Goal: Created irrigation management zones that account for differences in infiltration, soil water storage, and tree vigor
- Evaluated two precision irrigation approaches: Almond Irrigation by Variety and Zone-based irrigation
- Spatial mapping, zone clustering, and zone-based irrigation


Precision irrigation: Almond irrigation by variety

Precision irrigation: Almond irrigation by variety

Compared effects of:


- Irrigating according to nonpareil hull-split timing
- (2) Irrigating according to variety-specific hull-split timing

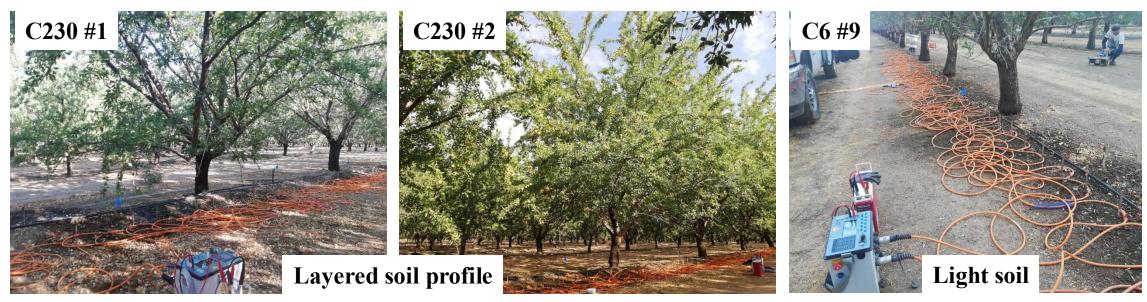


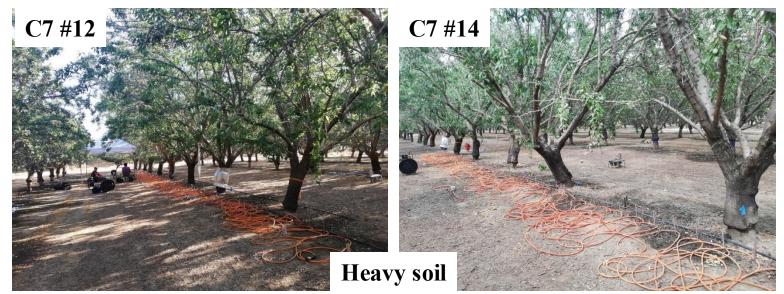
Soil variability within an almond orchard near Corning, CA

Precision irrigation based on management zones

Layered soil irrigation zone

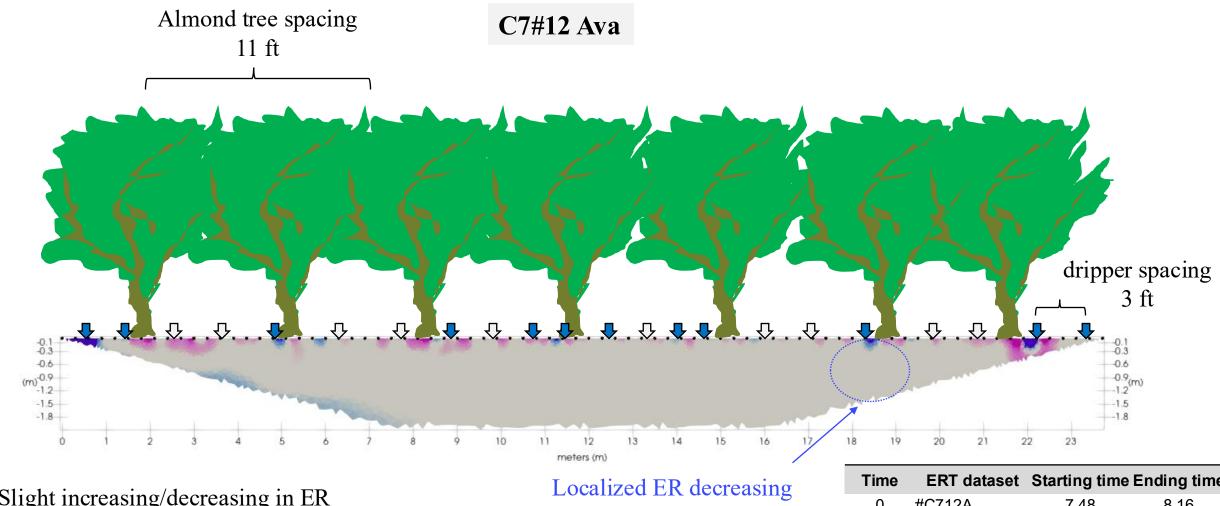
Light soil irrigation




Measuring root water uptake and infiltration in different soils

Soil heterogeneity has a significant impact on irrigation management

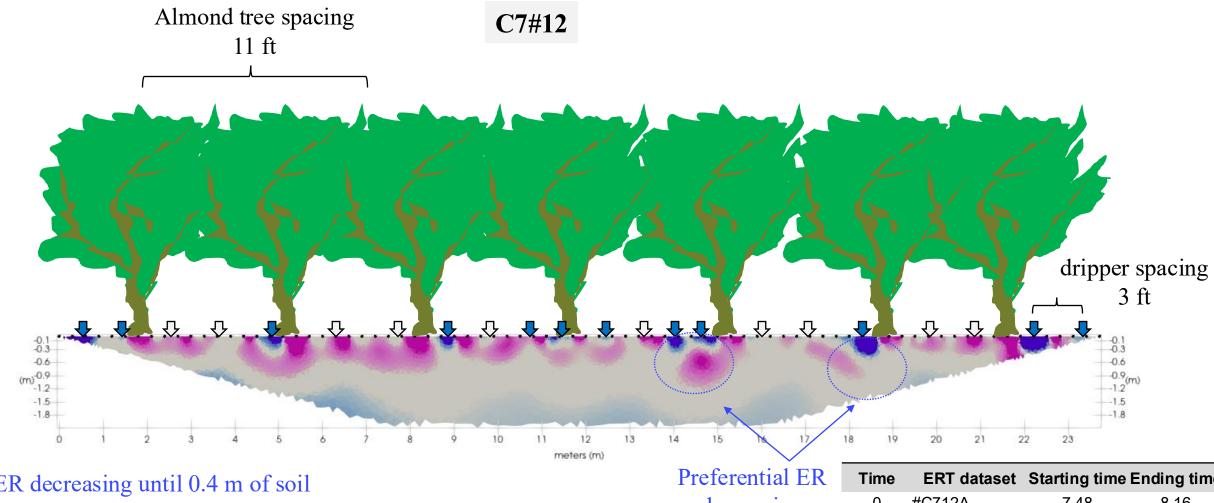
Infiltration, soil water storage, and root uptake in heavy soil



ERT time-lapse survey: time 1 versus time 0

Slight increasing/decreasing in ER

9.05 am irrigation beginning

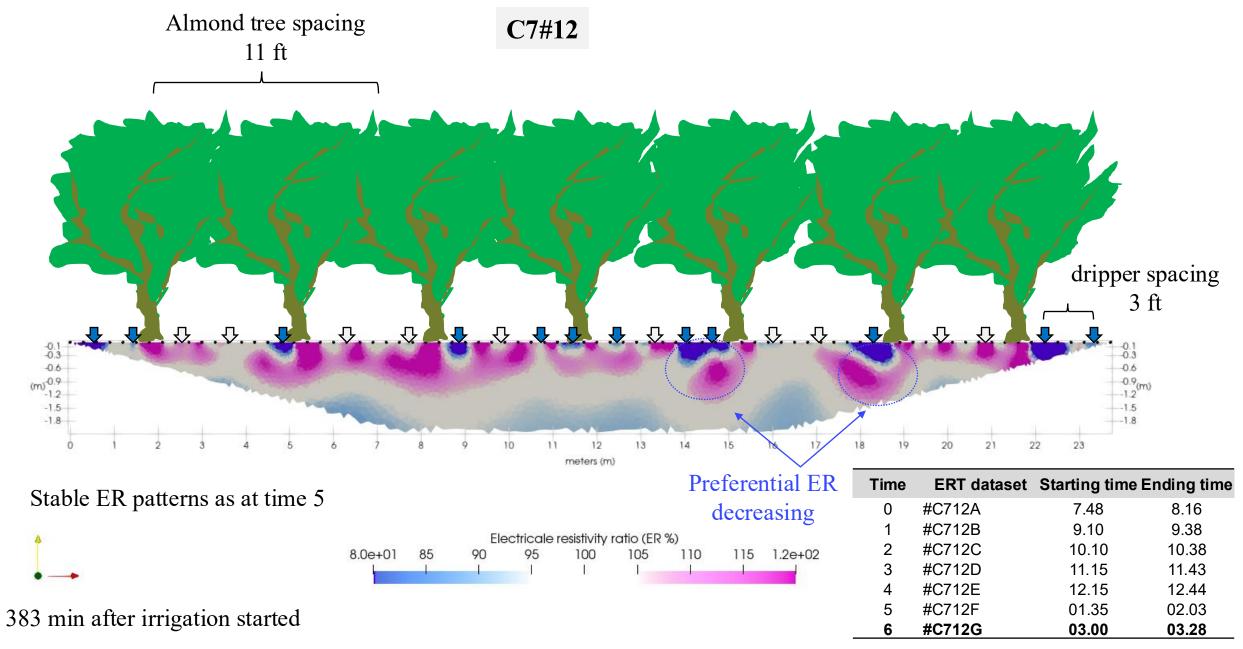

33 min after irrigation started

		Ele	ectricale	resistivity	ratio (ER	%)		
8.0e+01	85	90	95	100	105	110	115	1.2e+02
		-1		l.	1	-1-		

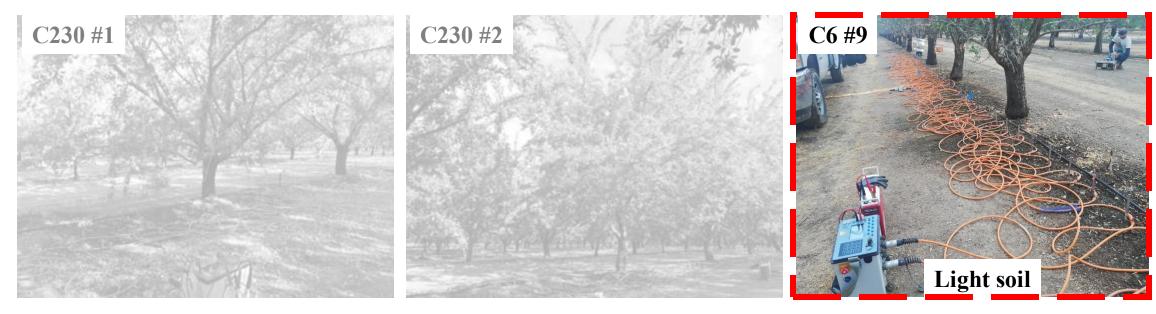
Vanella, Kisekka et al. 2022

Time	ERT dataset	Starting time	Ending time
0	#C712A	7.48	8.16
1	#C712B	9.10	9.38
2	#C712C	10.10	10.38
3	#C712D	11.15	11.43
4	#C712E	12.15	12.44
5	#C712F	01.35	02.03
6	#C712G	03.00	03.28

ERT time-lapse survey: time 3 versus time 0

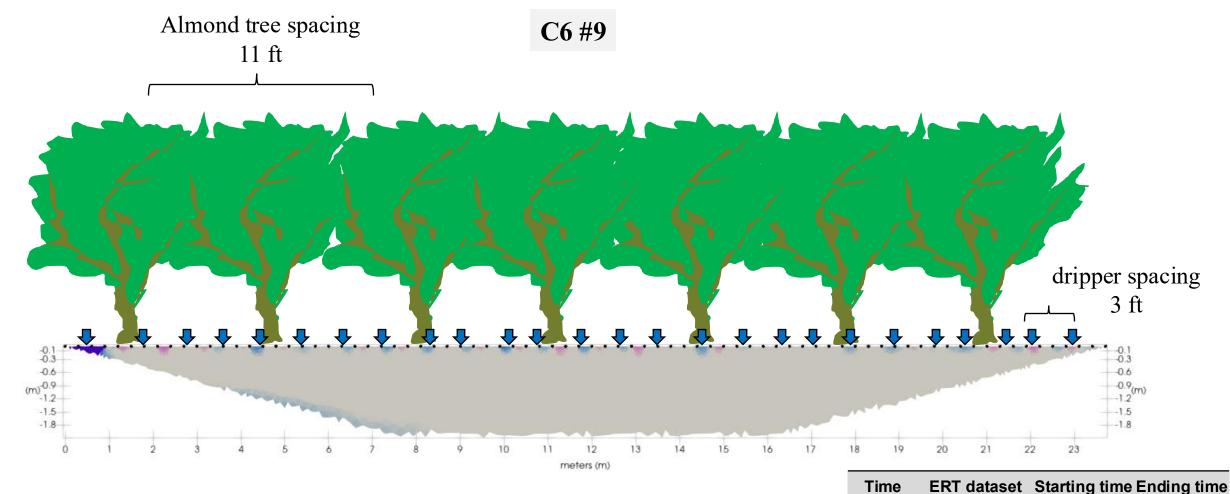

ER decreasing until 0.4 m of soil depth >>> Irrigation fronts

decreasing Electricale resistivity ratio (ER %) 8.0e+01 115 1.2e+02

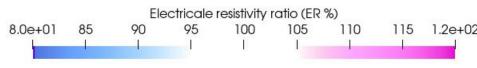

Γime	ERT dataset	Starting time	Ending time
0	#C712A	7.48	8.16
1	#C712B	9.10	9.38
2	#C712C	10.10	10.38
3	#C712D	11.15	11.43
4	#C712E	12.15	12.44
5	#C712F	01.35	02.03
6	#C712G	03.00	03.28

158 min after irrigation started

ERT time-lapse survey: time 6 versus time 0



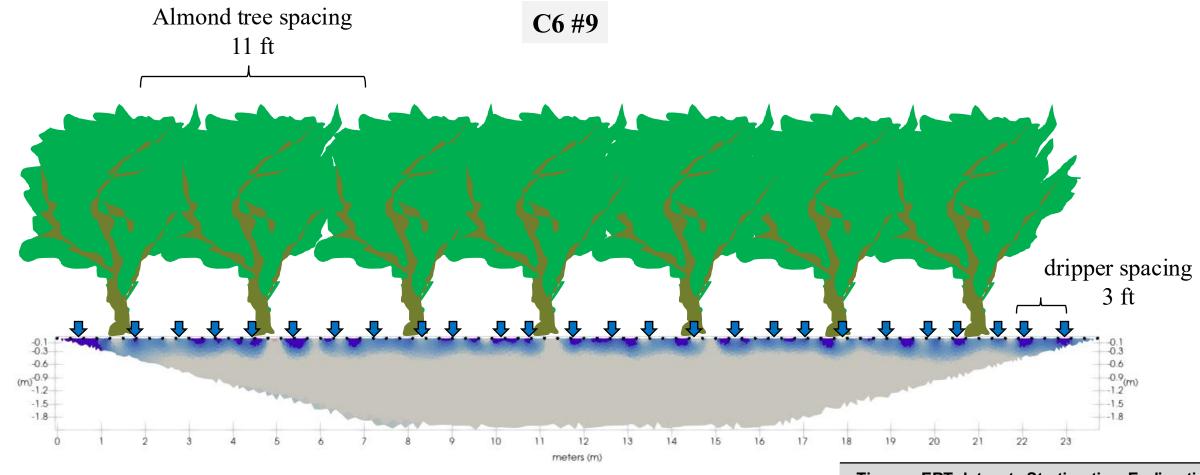
Infiltration, soil water storage, and root uptake in heavy soil


ERT time-lapse survey: time 1 versus time 0

Slight increasing/decreasing in ER

08.15 irrigation beginning

33 min after irrigation started

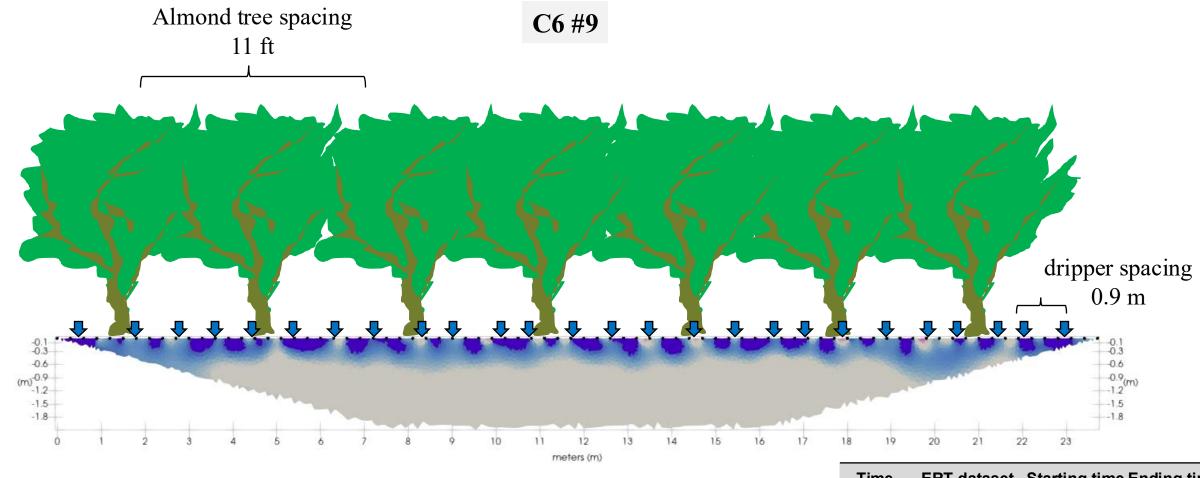

stivity i 100 	ratio (ER 105 I	%) 110 	115	1.2e+02	1 2 3	#C69B #C69C #C69D	8.20 9.24 10.33	8.48 9.52 11.00
				•	4	#C69E	11.30	12.00
					5	#C69F	12.52	01.20
Vanella, Kisekka et al. 2022					6	#C69G	02.13	02.40
	,							

#C69A

7.23

7.51

ERT time-lapse survey: time 3 versus time 0


Fast decreasing of ER until 0.4 - 0.5 m depth >> Gravitational pull

Electricale resistivity ratio (ER %)
8.0e+01 85 90 95 100 105 110 115 1.2e+02

141 min after irrigation started

Time	ERT dataset	Starting time	Ending time
0	#C69A	7.23	7.51
1	#C69B	8.20	8.48
2	#C69C	9.24	9.52
3	#C69D	10.33	11.00
4	#C69E	11.30	12.00
5	#C69F	12.52	01.20
6	#C69G	02.13	02.40

ERT time-lapse survey: time 6 versus time 0

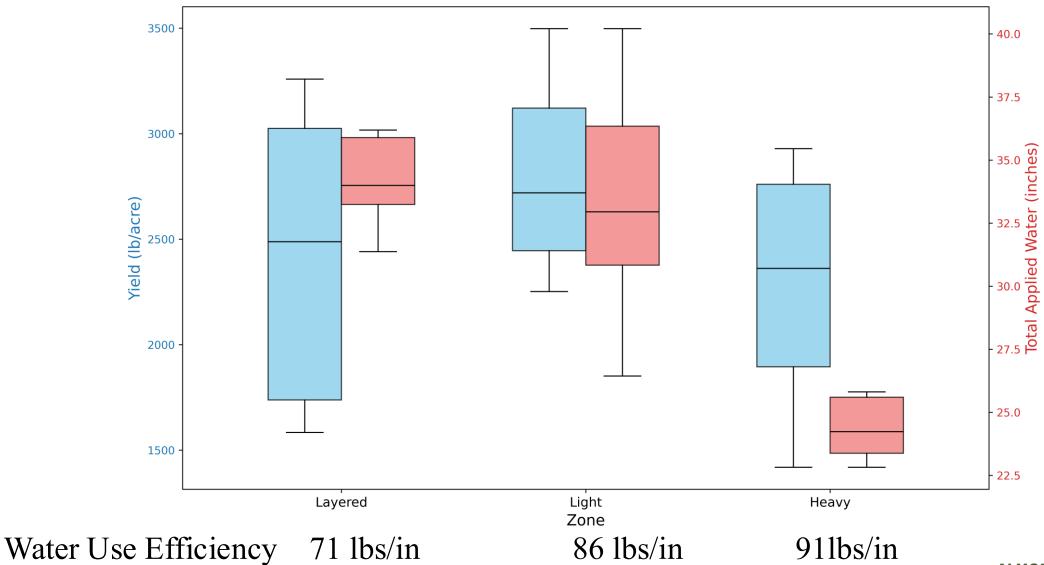
Fast decreasing of ER until
1.2 m depth
>> Gravitational pull

Electricale resistivity ratio (ER %)
8.0e+01 85 90 95 100 105 110 115 1.2e+02

361 min after irrigation started


Time	ERT dataset	Starting time	Ending time
0	#C69A	7.23	7.51
1	#C69B	8.20	8.48
2	#C69C	9.24	9.52
3	#C69D	10.33	11.00
4	#C69E	11.30	12.00
5	#C69F	12.52	01.20
6	#C69G	02.13	02.40

Key takeway:

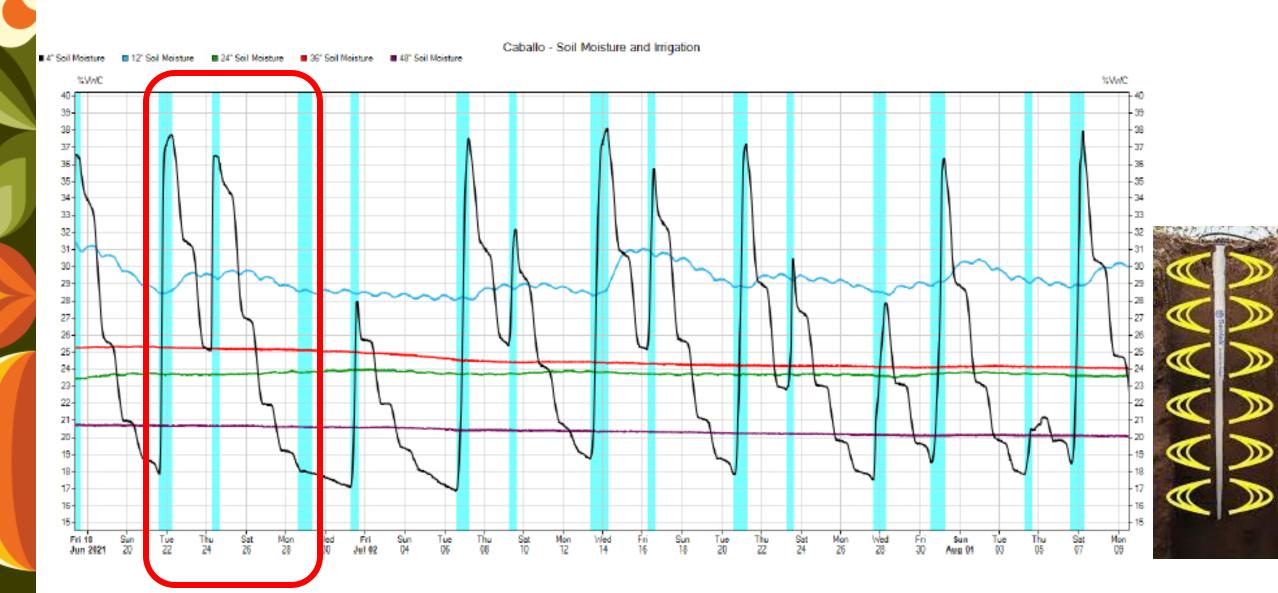

Knowing site-specific infiltration rates can help to prevent water deficits and water/nutrients losses by drainage.

Heavy soils: Less frequent longer sets

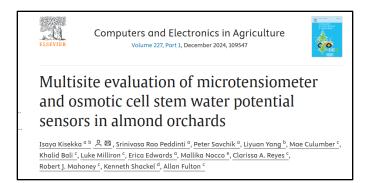
Light soils: More frequent shorter sets

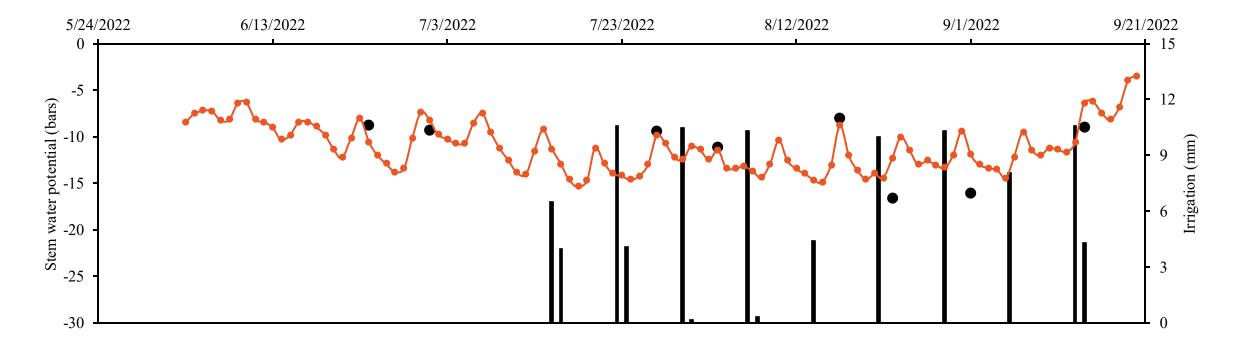
Almond Nut Yield and Applied Water by Irrigation Zone

Average almond WUE 61 lbs/in

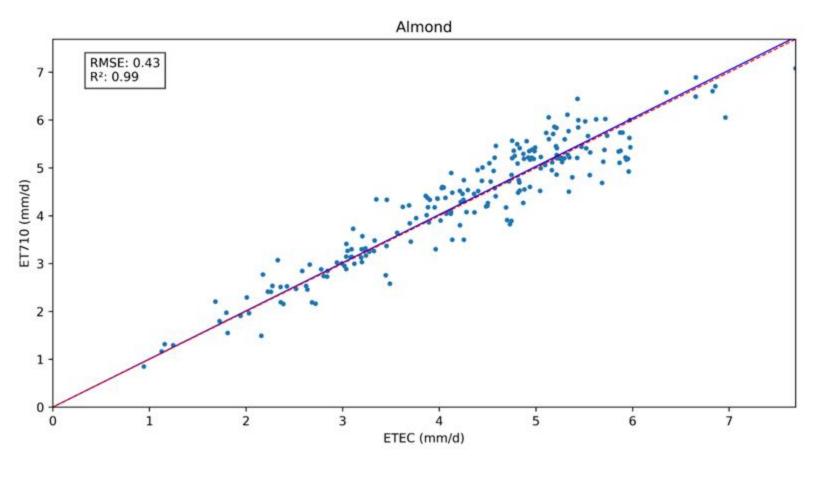

https://www.thealmonddoctor.com/blog/almond water use efficiency

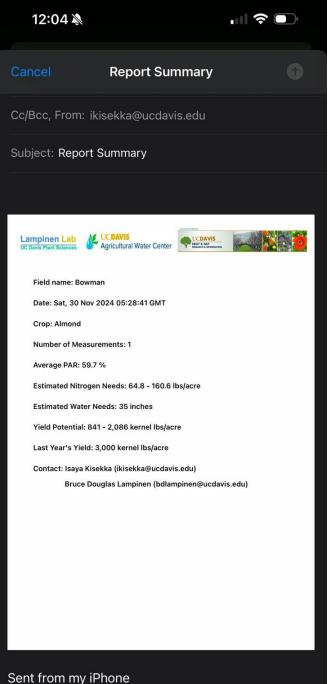
Precision irrigation informed by an integrated monitoring of the soil-plant-water system


- Soil water potential (SWP) monitoring
- Soil moisture monitoring
- ET monitoring


Soil water sensing is valuable for providing feedback on the adequacy of an irrigation set and for alerting you when you start to leach

Plant stem water potential sensors




Low-cost ET sensors provide orchard-specific crop water use

Predicts attainable yield, water, and nitrogen requirements as a function of fPAR.

How growers can start implementing precision irrigation

- Map variability (soil, tree vigor)
- Identify zones
- Add at least a combination of two sensors in each zone (soil, plant, ET)
- Apply zone-specific irrigation
- Reassess yearly

Main takeaways

- Precision irrigation based on tree variety or zone management is scalable, actionable, and ready now
- Compatible with automation and AI-assisted irrigation
- Supports long-term water sustainability: Significant potential for industry-wide water savings, yield, and nut quality improvements
- Precision irrigation provides opportunity for Grower–Almond Board– University collaboration

Acknowledgments

Collaborators: Grower Cooperators, students, postdocs, research scholars in the Kisekka Lab at UC Davis

Field Screening Dwarfing Rootstocks for Off-Ground Harvested Almond Orchards

Roger Duncan

Pomology Advisor, Emeritus
University of California
Cooperative Extension
Stanislaus County

University of California
Agriculture and Natural Resources

Tenias Offground Harvester

Maximum tree height ~ 18' Row spacing ~ 18'

TOL Offground Harvester

Dwarfing Rootstock Trial for Almonds – UC Kearney Ag Center

Objectives:

- Screen currently available "dwarfing" almond and stone fruit rootstocks for compatibility with Nonpareil and Monterey almond scions
- Document vigor relative to Nemaguard

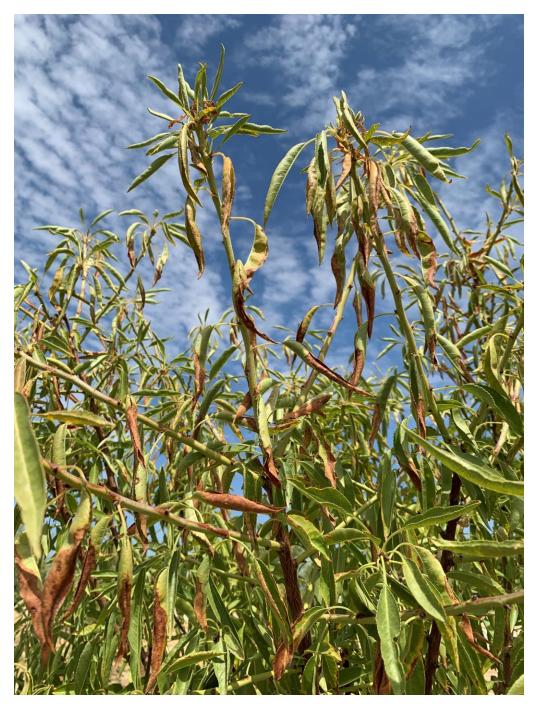
Dwarfing Rootstocks, Source, and Genetic Background.

Rootstock	Genetic Background	Source				
Nemaguard	Peach	USDA				
Viking	Peach, almond, plum, apricot	Zaiger Genetics				
Brights Hybrid 5	Peach x almond	Brights Nursery				
Rootpac 20	Plum x plum	Agromillora				
Controller 6	Peach x peach	UC Davis				
Controller 9	Plum x peach	UC Davis				
Citation	Plum x peach	Zaiger Genetics				
266LZ4	Proprietary	Zaiger Genetics				
95LG249	Proprietary	Zaiger Genetics				
D63.182	Proprietary	Wawona				
MP-29	Peach x plum	USDA				
TRIO 25-07	Proprietary	Fowler				
3776	Proprietary	Sierra Gold				
DA 6 (Bantam)	Plum	Sierra Gold				
Observational Only						
FL x K2	Peach x peach	UC Davis				
Hybrid 29	Proprietary	Sierra Gold				
K37.068	Proprietary	Wawona				
ATAP	Proprietary	Fowler Nursery				
TRIO 22-07	Proprietary	Fowler Nursery				

Dwarfing Rootstock Trial for Almonds

- Planted September 2020
- UC Kearney Ag Center, Parlier, CA
- 16 "dwarfing" rootstocks, 3 standards
- Orchard planted to accommodate Tenias over-the-row harvester
- Spacing: 8' x 18' (303 trees / acre)
- Wire trellis instead of staking
- No scaffolds below 3'
- No training, no pruning

4th Leaf Nemaguard



Nonpareil 8' x 18' Monterey

4th Leaf Rootpac 20.

Monterey 8' x 18' Nonpareil

Rootpac 20

- Used extensively in Spanish SHD almonds
- About 20% the canopy size of Nemaguard.
- Both varieties had mild, early signs of incompatibility (rolled, burned leaves, brown line at bud union).
- Better by the 4th leaf.
- Profuse crown suckering.

Controller 9 (aka P30-135)

- Both varieties showed extensive signs of incompatibility, including severe stunting and leaf rolling, undergrowth of the rootstock and a brown line at the bud union.
- Half of the Nonpareil trees have died.

Half of all Nonpareil trees on <u>DA6 (a.k.a.</u>

<u>Bantam</u>) have collapsed and died (left) while Monterey on DA6 look good (right) and are about half the size of trees on Nemaguard.

Nonpareil Monterey

Citation:

- In contrast, 54% of
 Monterey trees collapsed by
 late summer in the 1rst leaf;
 68% by end of the 4th leaf.
- Nonpareil showed moderate signs of incompatibility on Citation for the first two years, but most trees have recovered and look very good by the 4th leaf (left).

Nonpareil Monterey

Nonpareil Monterey

MP-29

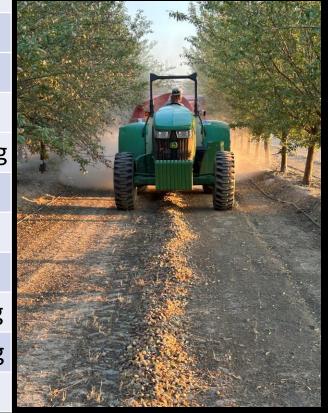
- Noted for resistance to oak root fungus
- No signs of incompatibility, very little suckering.
- Nonpareil canopy was 43% of Nemaguard.

Controller 6

- No signs of incompatibility.
- Nonpareil canopies of trees were 73% of those on Nemaguard 2nd leaf but have nearly caught up by 5th leaf.

Graft Compatibility of Nonpareil & Monterey Scions on Dwarfing Rootstocks

	Percent Trees w	ith Stunted Growth	Trees Dead From Apparent Graft			
	and Rolled, N	Necrotic Leaves	Incompatibility Thru 4th leaf			
	1rst &	2 nd leaf	(%)			
	Nonpareil	Monterey	Nonpareil	Monterey		
New Root 2	100	100	100	60.7		
266LZ4	100	100	100	100		
DA 6	100	0	50.0	0		
Controller 9 (aka P30-135)	21.4	28.6	48.1	0		
Citation	17.9	78.6	3.7	67.9		
Rootpac 20	100	100	0	0		
Controller 6 (aka HBOK 27)	0	0	0	0		
D63.182	0	0	0	0		
TRIO 2507	0	0	0	0		
3776	0	0	0	0		
MP-29	0	0	0	0		
Nemaguard	0	0	0	0		
Viking	0	0	0	0		
FI x K2	0	0	0	0		
Hybrid 29	0	0	0	0		
ATAP ¹	0	-	0	-		
TRIO 22-07	0	-	0	-		
K37.068 ¹	0	0	0	0		


Trunk Circumference of Nonpareil and Monterey Scions on Experimental Rootstocks. Percent of Nemaguard Trunk Circumference (cm)¹ Rootstock Nonpareil Monterey Nonpareil Monterey 42.8 a 44.0 a Brights 5 108 116 43.9 a Viking 42.4 ab 108 115 Controller 6 41.6 ab 37.5 cd 102 102 40.8 ab 36.9 Nemaguard cde Citation² 39.6 bc 34.0 ef 92 97 D63.182 39.4 bc 38.1 97 103 3776^{2} 35.4 33.8 89 87 TRIO 25-07² 33.7 35.3 83 96 32.9 MP-29 33.7 de 83 89 36.7 33.8 ef 92 Rootpac 20 90 С DA6² 39.2 abcd 29.6 73 106 e

¹Tree size measurements shown in this table are from surviving trees which may be a misrepresentation for Monterey on Citation and Nonpareil on DA6.

²Rootstocks are not fully replicated and for observation only

Yields of Third - Fifth Leaf Trees on Experimental Rootstocks. Trees planted at 8' x 18' (303 trees / acre).

Rootstock	Cumulative Yield (3 rd - 5 th Leaf)			2025 Yield (5 th leaf)				
	No	onpareil	M	onterey	Nor	pareil	Mor	nterey
Brights 5	6264 a		6035 a		2816 a	ab	3064	a
Viking	5720 a	b	5720 a	b	2558 a	abcd	2637	ab
Controller 6	5576 a	b	5782 a	b	2889 a	9	2535	b
Nemaguard	4895	bc	4560	С	2159	bcd	1868	cd
3776*	4510		3421		1789		1501	
Citation	4278	cd	1241	fg	2195	bcd	773	g
D63.182	3486	de	3862	cd	1441	е	1836	cd
MP-29	3113	е	3383	de	1562	е	1646	cd
TRIO 25-07*	1804		1157	g	714		478	
Rootpac 20	1512	fg	1540	fg	906	f	876	fg
Controller 9	981	g	1615	ef	488	fg	1001	efg
DA 6	326	h	2618	е	221	g	1402	cde

Thank you for listening.

Thank you to the Almond Board for funding several decades of rootstock and variety research

Roger Duncan

raduncan@ucdavis.edu

University of California
Agriculture and Natural Resources
UCCooperative
Extension

Nickels Soil Lab Projects, 2025

Almond Board of California

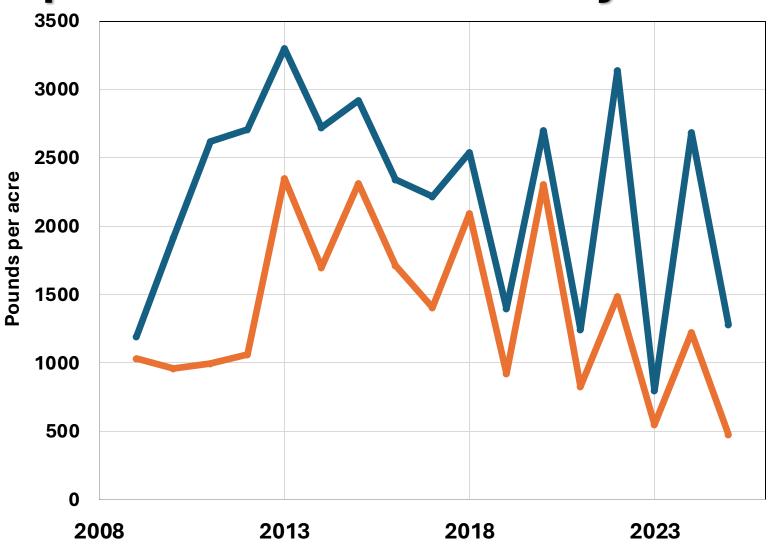
December 11, 2025

Franz Niederholzer, UCCE Advisor Colusa and Sutter/Yuba Counties

University of California Cooperative Extension

Agriculture & Natural Resources

The Nickels Soil Lab background.

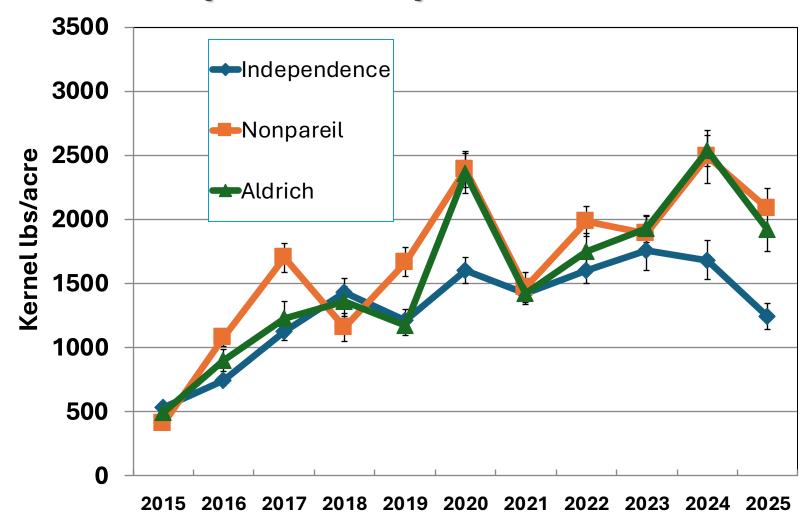

- 162 acres, SW of Arbuckle, CA (Colusa County). Class 2 or 3, gravelly loam soils.
- Bequeathed by Leslie J. Nickels for ag research in 1959. The Nickels Soil Lab is a private entity, operated by the Nickels Trust under supervision of the County Court of Colusa. The Nickels Trust ≠ UC.
- Formal legal arrangement with UC ANR in 1983. Nickels Trust farms, UCCE Colusa Co coordinates research by UC and USDA researchers. For many years, nut sales paid for day-to-day farming. Strong support from Almond Board of CA for big ticket items (well, irrigation infrastructure, etc.)
- Currently 80 acres of almonds, 9 acres of walnuts, 2 acres of table olives. 13
 research/demo projects. Operating costs are 15-25% above commercial operations.
 [There are 10+ orchards each with different spacings, trees, etc. to get the most data out of the resources (land, water, etc.) available.]
- With tighter nut pricing and higher costs, Nickels is operating (since 2022) with additional support from the Almond Board of California, the state of California (thank you Sen Dahle and Assem. Aguiar-Curry), grower donations, and manufacturers' material support along with support from JCS Marketing and Colusa-Glenn Farm Credit.

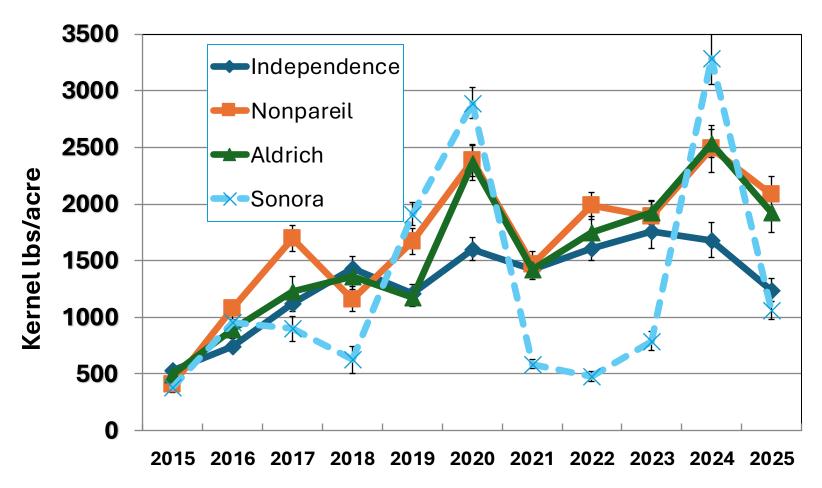
Projects and background...

- 1. Organic almond production demonstration block (5.5 acres)
 - 2006 planting. 16' x 22' on <u>Lovell</u> rootstock, 2x shallow buried (6") drip
- Comparison of high value Nonpareil/pollinizer planting to 100% self-fertile almond (Independence) planting. (5.5 acres)
 - 2013 planting. 15'x 20' on Viking rootstock, 2x line drip
- 3. Tree spacing trial, almonds (16 acres)
 - 2017 planting. 12', 14', 16', or 18' x 21' spacing on <u>Titan</u> peach/almond hybrid or <u>Rootpac-R</u> almond/plum hybrid. 2x line drip

Seventeen years of yield data comparing conventional and organic production in the same system.

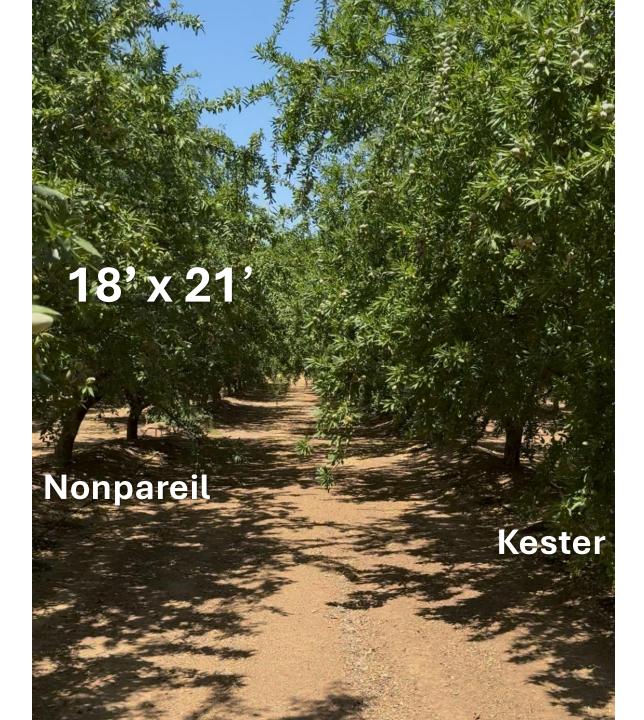
Disease control and adequate nitrogen nutrition were/are major factors impacting yield in this project.




Orchard spacing 15' x 20'

Nonpareil and Aldrich generally produced more than Independence in this planting. Independence yields are consistent and equal to Nonpareil when measured per PAR.

The "wild card in the deck" is Sonora w/ highly variable performance in this trial. Looks great in some years. Lessons from this trial: Plant Independence on a proven, high vigor rootstock for higher yield. Fix yield issues or move on from Sonora.



Tree spacing trial planted in 2017. 12', 14', 16', or 18' down the row. 21' row spacing.

May 2024. 50% NP, 25% Aldrich, 25% Kester

Cumulative yields (kernel lb/acre) for cultivars at different spacing on Titan or Rootpac-R rootstock (**2020-24**). Data in the columns followed by the same letter are not significantly different at the 5% level using Tukey HSD. Data for Titan-rooted trees are from 4th-8th leaf. Rootpac-R rooted tree data are from 3rd-7th leaf. **All data are from cart weights reduced 25% to account for rocks.**

		Titan (peach x almond) rootstock			Rootpac-R (almond x plum) rootstock		
Row Spacing (ft)	Trees /acre	Nonpareil	Aldrich	Kester	Nonpareil	Aldrich	Kester
12'	173	9548 ab	9408 a	5984 ab	6796 a	7112 a	5820 a
14'	148	9766 a	9428 a	6350 a	6473 a	6483 a	5884 a
16'	130	9291 ab	8719 a	5577 b	6441 a	6256 a	5391 a
18'	115	8861 b	9002 a	5902 ab	6518 a	6287 a	5657 a

Difference in yield by spacing have been relatively small, but consistent. Tighter (12' or 14') has been better then wider (16' x 18'). Cart weights are reduced 25% due to rocks

