

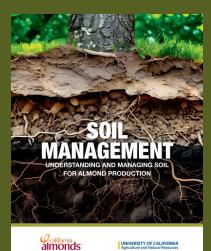
SOIL & IRRIGATION MANAGEMENT

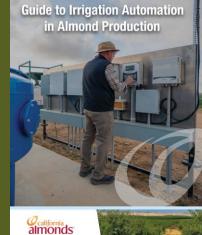
Moderator

Sebastian Saa, ABC, Ag. Research

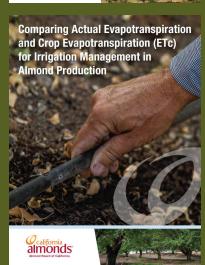
Speakers

Mae Culumber, UC ANR

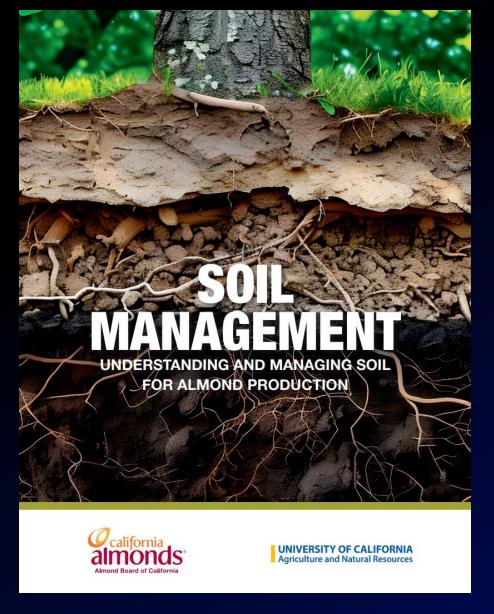

Guillermo Valenzuela, WiseConn Engineering


Tom Devol, Irrigation & Technology Independent Consultant

Kyle Knipper, USDA ARS



NEW RESOURCES:Q&A:


NEW SOIL MANAGEMENT

RESOURCE

MAE CULUMBER PHD
UC COOPERATIVE EXTENSION ADVISOR
FRESNO -

DECEMBER 10, 2025

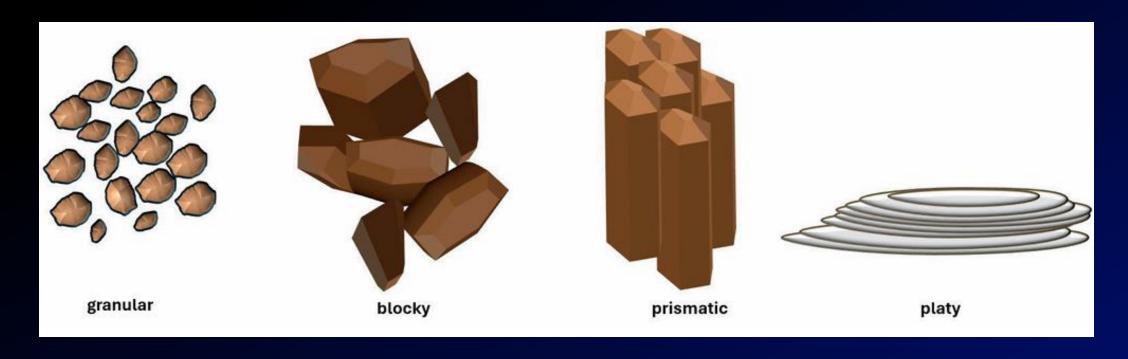
Why manage the soil?

- Reduce soil erosion
- Enhance drainage
- Boost water retention
- Increase nutrient availability
- Reduce salts
- Enhance and sustain longterm yield

The Soil Profile

• Layers of different texture, color, chemistry, and biological activity

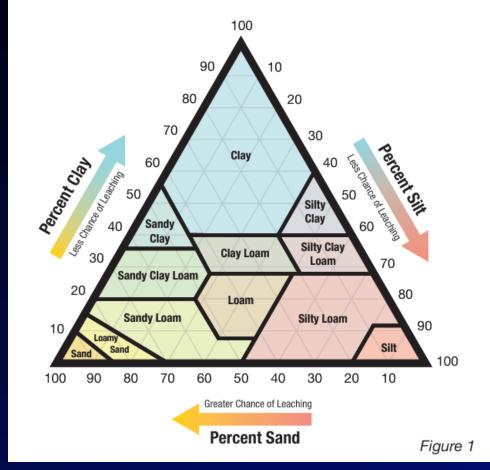
The Soil Profile



Topsoil: where organic matter accumulates, biological life and nutrients for growing plants reside

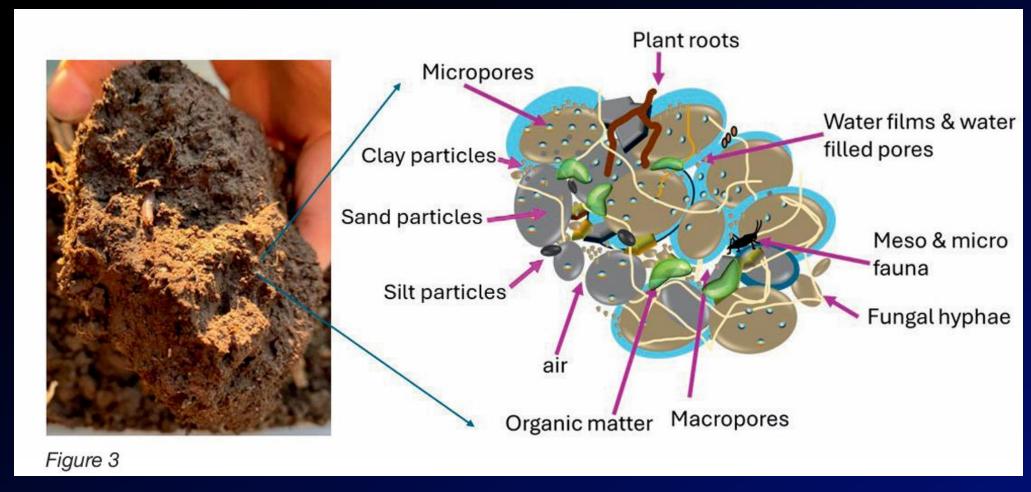
Subsoil: deeper layers often control water movement and root penetration

Soil aggregate forms


- Topsoil granular aggregates loosely arranged, allow water to easily infiltrate
- Subsurface blocky or prismatic aggregates larger and denser, can restrict water movement, reduce aeration, and limit root growth
- Platy structures restrict water movement and found close to the surface or in subsoil

Building blocks of soil:

Sand, Silt, and Clay



Texture can change with different soil layers

Soil Organic Matter

Living and partially decomposed plant residues, roots, and soil organisms, microbial exudates, older more slowly decomposing organic compounds mix with mineral soil to form aggregates

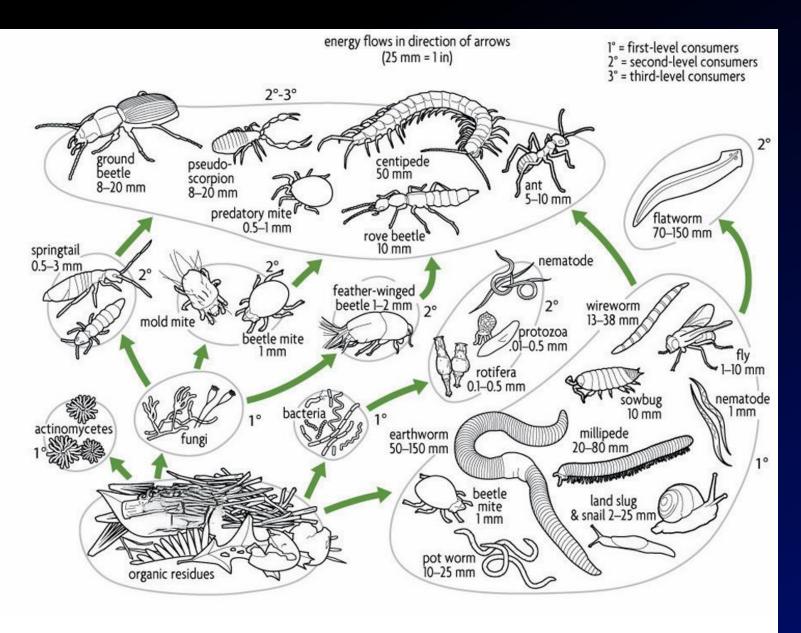
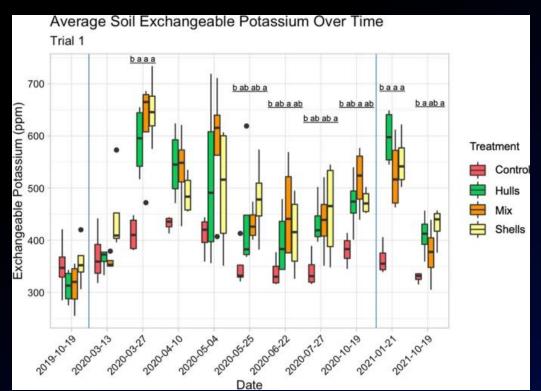


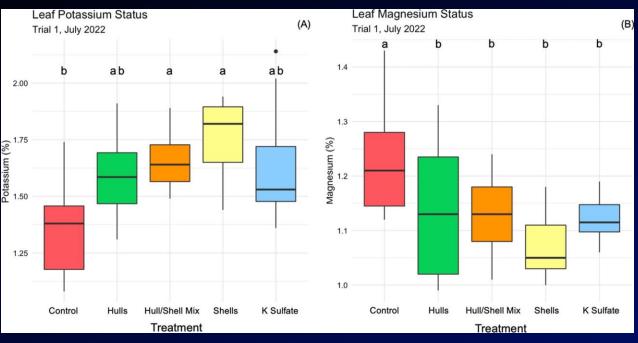
Figure 4. The soil food web. Modified from D.L. Dindal (1972). Adapted from illustration by Vic Kulihin.

Meso and Micro Fauna of the Soil Food web

Organic materials

- Influence the balance of carbon (C) and nitrogen (N), two key elements that sustain soil biological activity
- Protect the soil and increase resilience to weather fluctuations
- Enhance soil water holding capacity
- Source of nutrients may partially substitute for chemical fertilizer without compromising yields and revenue



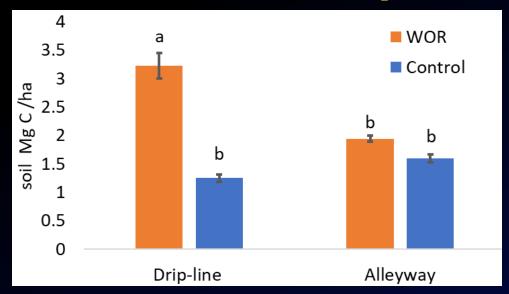


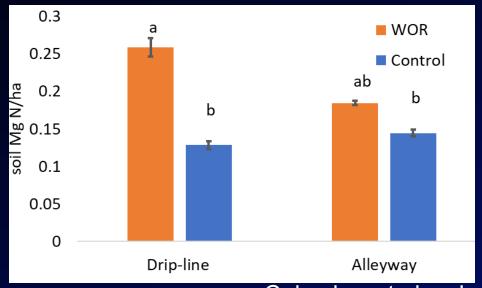
Almond hulls and shells

Andrews et al. 2024

- No risk of N immobilization with high C:N
- Higher level of soil exchangeable K in top 6 inches (2 to 7 weeks after application)
- Same leaf tissue K content compared to K-sulfate

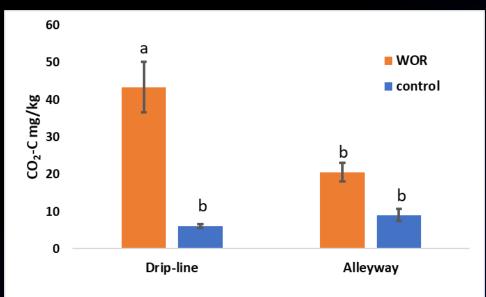
Organic materials potential to offset fertilizer use

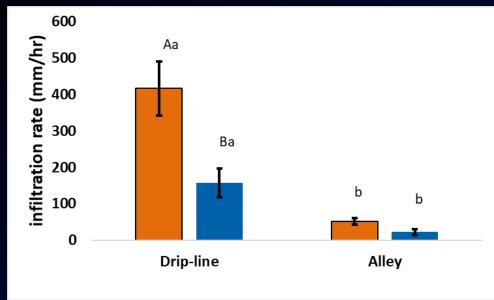

Product	Rate/acre	N%	Available N lb/acre	K ₂ O%	K ₂ O lb/acre	Cost/ton	Annual cost/acre
UAN32	56 gal	32	200	0	0	\$380	\$112
Sulfate of potash	450 lb	0	0	50	225	\$750	\$170
Total		_	200		225	\$1130	\$282

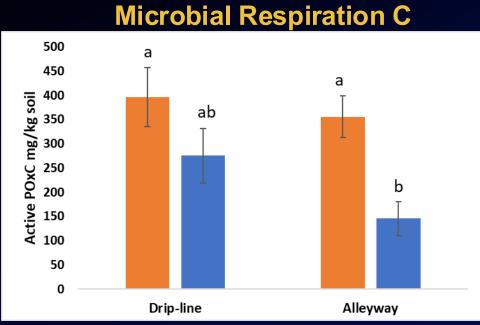

Product	Rate/acre	N%	Available N lb/acre	K ₂ O%	K₂O lb/acre	Cost/ton	Annual cost/acre
Manure compost	3 tons	2.3	35*	2	120	\$35	\$105
Almond hulls and shells	2 tons	0.3	12	2.8	115	\$45	\$90
UAN32	43 gal	32	153	0	0	\$380	\$87
Total			200		235	\$460	\$282

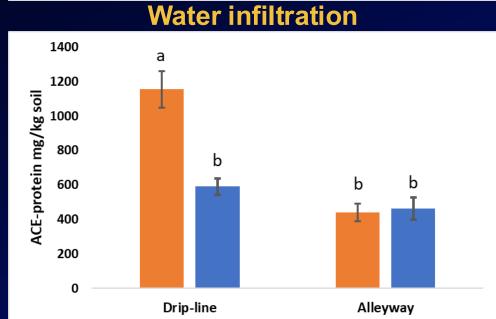
- To estimate nutrient contributions from amendments, submit samples for lab analysis total N (%) and potassium oxide (K2 O, %).
- Total nutrient contribution calculated by multiplying the analysis (%) by the dry-weight application rate. Compost N reduced to 25% for the slow mineralization release of N

Wood Chips Impact Soil C and N in a Replanted Orchard

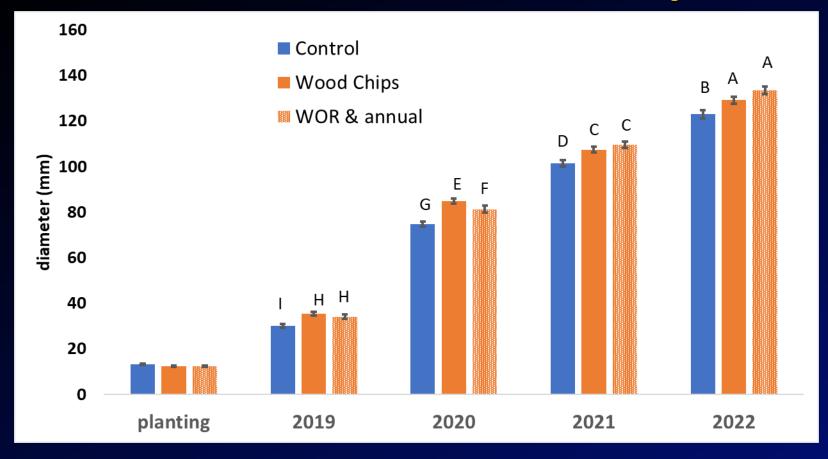



Culumber et al. submitted


- Soil C and N levels (< 2mm fraction) higher in WOR soils after 1 year
- Soil C stocks increase by > 880 lb C per acre in WOR treatment in 2 years
- Soil N stocks increase soil stores by 120 lb N per acre
- Suggests increased soil fertility for growing trees in WOR berms
- Little change in WOR alleyway likely due to slow biomass decomposition

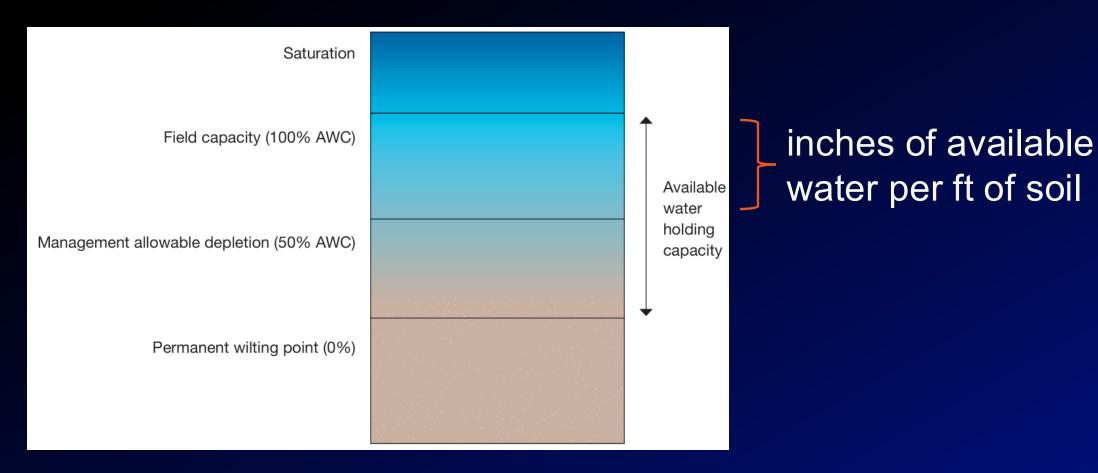


Additional Indicators of Soil Function with Wood Chips



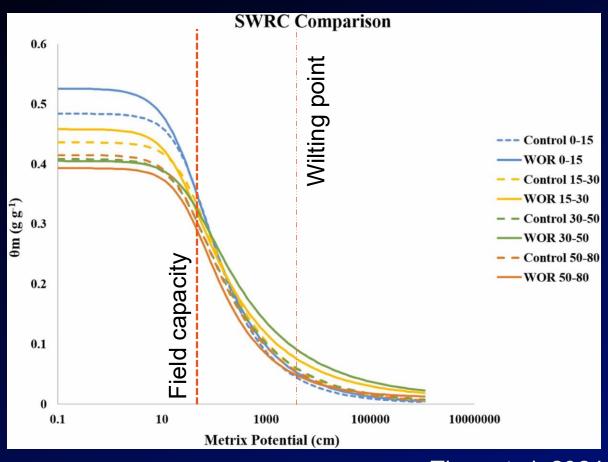
Organically bound N proteins

Mineral bound and active soil C


Almond Tree Growth after Wood Chips

April planting: only a 22% increase to the standard recommended rates (~5 oz N per tree or 52 kg per ha) WOR trees larger than conventional after the first season

Soil texture and organic matter influence available water holding capacity(AWHC)



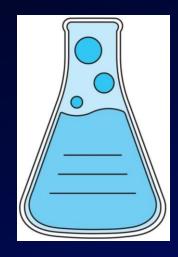
Some commercial labs offer site AWHC measurements, useful in orchards where SOM levels have substantially increased

Soil water characteristic: Wood chips vs Control by depth

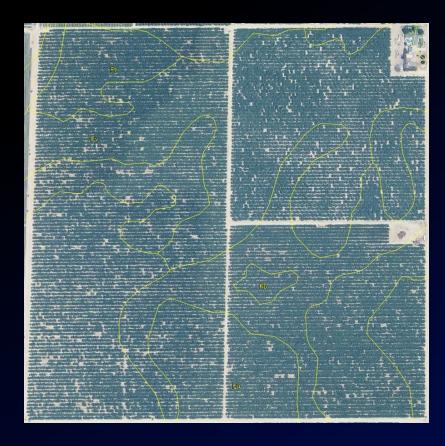
Thao et al. 2024

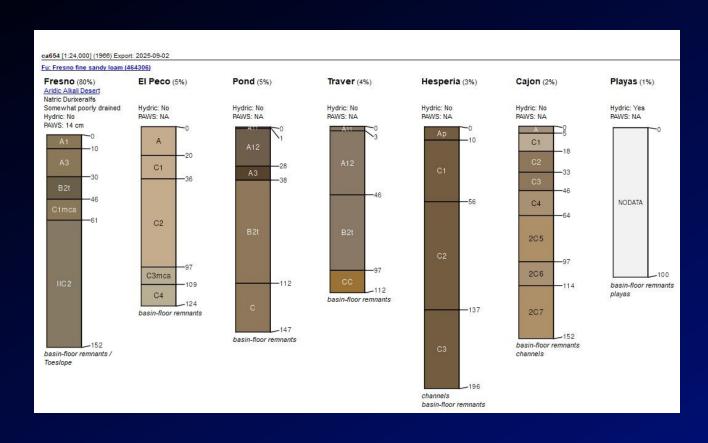
Bio-stimulant products promise:

- Improved stress resilience
- Improved yield
- Nutrient efficiency and savings
- Enhanced soil structure
- Reduced chemical footprint
- Economic savings


More field validation is needed.... conference 2

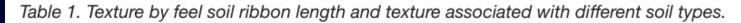
Soil Evaluation: Laboratory Methods


enable quantitative comparison of orchard management practice effects on soil function over time


- SOM
- Soil texture
- Carbon to Nitrogen ratio
- Soil available nitrogen
- Soluble and extractable cations
- Electrical conductivity
- Microbial biomass abundance and diversity
- Bulk density
- Nematodes

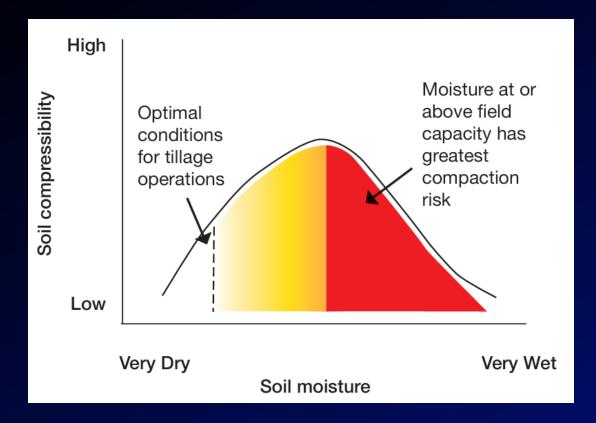
Soil Evaluation: Web Based Resources

Soil maps provide info about soil type changes across the field and useful to identify suitable locations for soil pit excavation to observe entire soil profile



Field Methods: Texture by Feel

- Form soil into a ball, squeeze between the thumb and index finger to form a ribbon
- Length of ribbon and grittiness determine soil texture and moisture content


		Texture			
		Gritty Smooth		Neither	
	0-1"	Sandy Loam	Still Loam	Loam	
Ribbon Length 2-3"	1-2"	Sandy Clay Loam	Silty Clay Loam	Clay Loam	
	2-3"	Sandy Clay Loam	Silty Clay Loam	Clay Loam	

Field operations impact soil structure

- Compaction collapses pore spaces, impedes root growth, decreases oxygen, water infiltration, water holding capacity and nutrient availability
- Avoid tillage and other equipment traffic when soil moisture is at or above field capacity
- Use texture-by- feel method to assess soil moisture conditions before conducting orchard operations

Field Methods: Infiltration rate

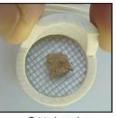
maximum rate water moves into the soil surface

Determine rate to:

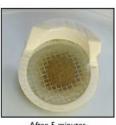
- select drip emitters or micro sprinkler nozzles
- fine tune irrigation duration and frequency to prevent deep percolation and nutrient losses

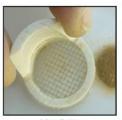
Soil texture	Permeability Class	Inches / hour
clay	Very slow	0.1
sandy clay, silty clay	Slow	0.1 - 0.2
clay loam, sandy clay loam, silty clay loam	Moderately slow	0.2 - 0.8
very fine sandy loam, loam, silt loam, silty clay loam, silt	Moderate	0.8 - 2.5
sandy loam, fine sandy loam	Moderately rapid	2.5 - 5
sand, loamy sand	Rapid	5 - 10
coarse sand	Very rapid	>10

Field Methods: Slake Test

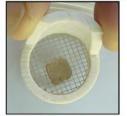

Clumps of soil with poor structure fall apart when placed into water

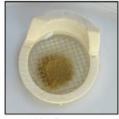
	EVALUATION EXAMPLES			
EVALUATION EXAMPLES				
POOR	MODERATE	GOOD		
The clump of soil disintegrate and fall apart in less than 2 minutes.	disintegrate and fall apart			

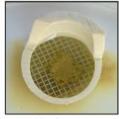


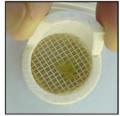


SEQUENCE FOR STABILITY CLASS = 1.

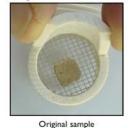

Original sample

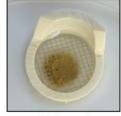

After 5 seconds


After 5 minutes


After 5 dips

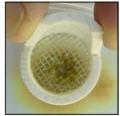
SEQUENCE FOR STABILITY CLASS = 4.

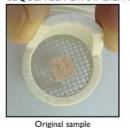

Original sample

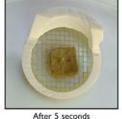

After 5 seconds

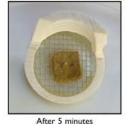
After 5 minutes

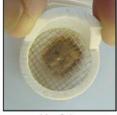
After 5 dips


SEQUENCE FOR STABILITY CLASS = 5.


After 5 minutes




After 5 seconds


After 5 dips

SEQUENCE FOR STABILITY CLASS = 6.

After 5 dips

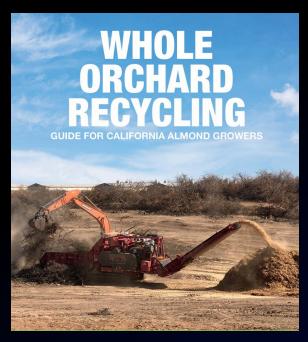
Field or Lab: Aggregate Stability

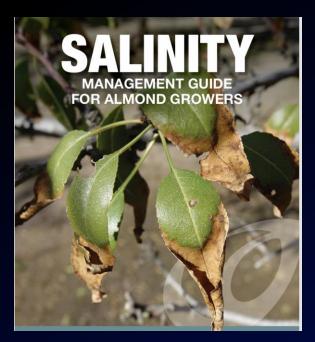
- > 80% aggregates remaining = excellent physical quality
- > 50 to 75% medium to good
- > 30 to 50% medium to low
- < less than 30% poor physical quality</p>

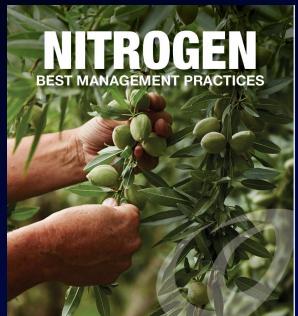
(https://www.blm.gov/sites/default/files/docs/2022-04/TR_1734_8_vol1_508.pdf)

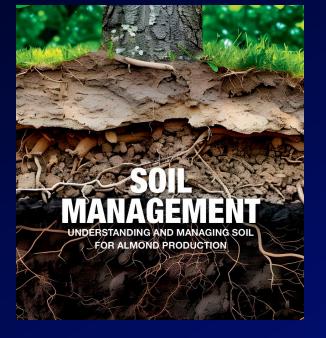
Field or Lab: Microbial biomass and activity

- Microbes metabolize carbon in organic matter to extract energy, releasing CO₂ as a byproduct.
- Higher fungal-to-bacterial ratios are linked to enhanced soil carbon storage, water retention, disease resistance, and nutrient cycling
- New field kits directly estimate
 CO₂ flux and microbial biomass
 and the relative abundance of
 fungi and bacteria in the soil



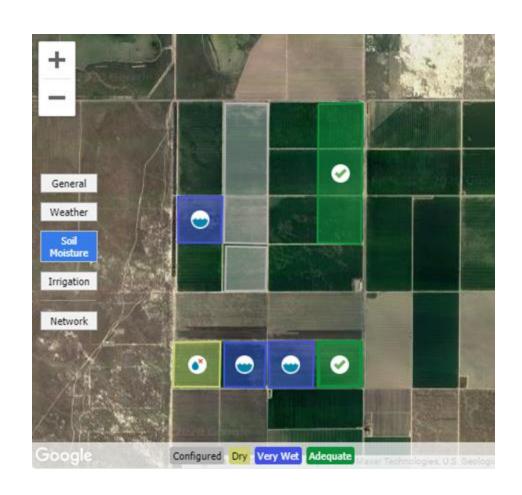





Summary

- Soil characteristics change with depth, impacting flow of water, air and nutrients through soil profile
- Field and laboratory assessments track how management practices influence soil function over time
- Organic materials, protect the soil surface, minimize disturbance, and conserve moisture can improve long-term soil function and orchard resilience
 - Potential to offset synthetic fertilizer use with a comparable budget
- Soil infiltration and water holding capacity should be considered for irrigation system design and scheduling to minimize surface runoff and deep percolation, to prevent nutrient loss from soil.

Essential component for water management:

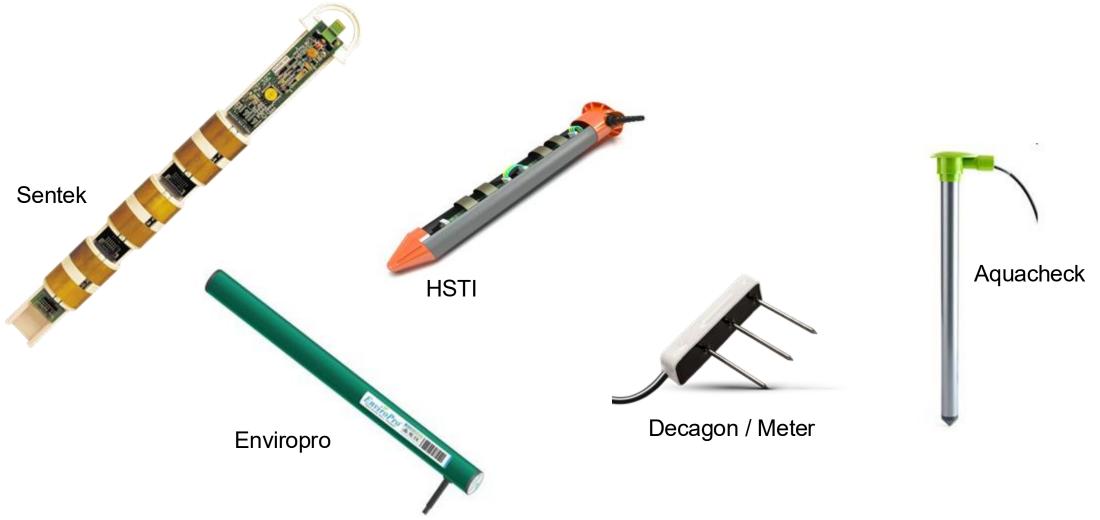


Continuous auger of the soil

Types of sensors

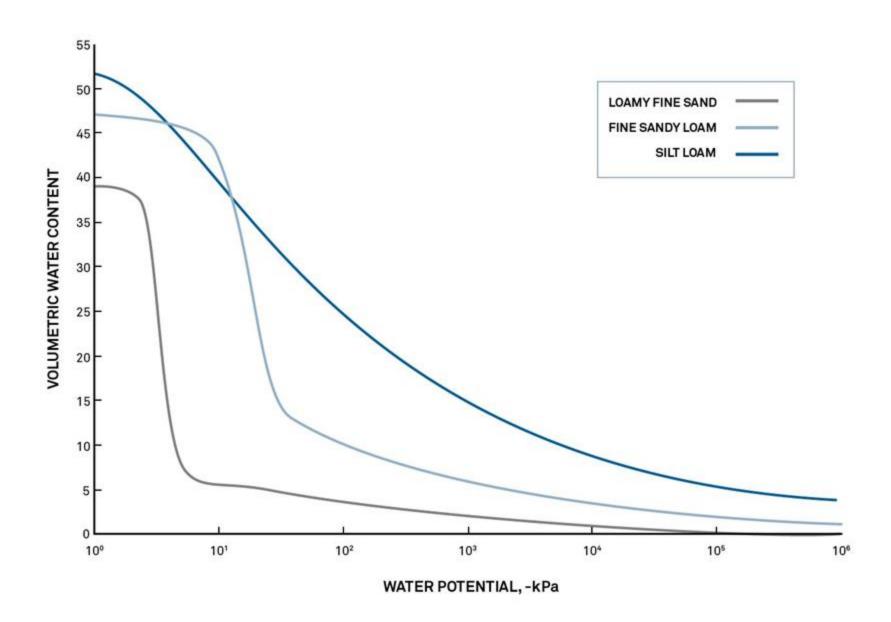
Sensor	Measures What?	How?
TDR	Volumetric Water Content	Electronic signals
Capacitance	Volumetric Water Content	Electronic Signals
Tensiometer	Water Potential	Tension
Gypsum Block	Water Potential	Tension

Water Potential - Tensiometers

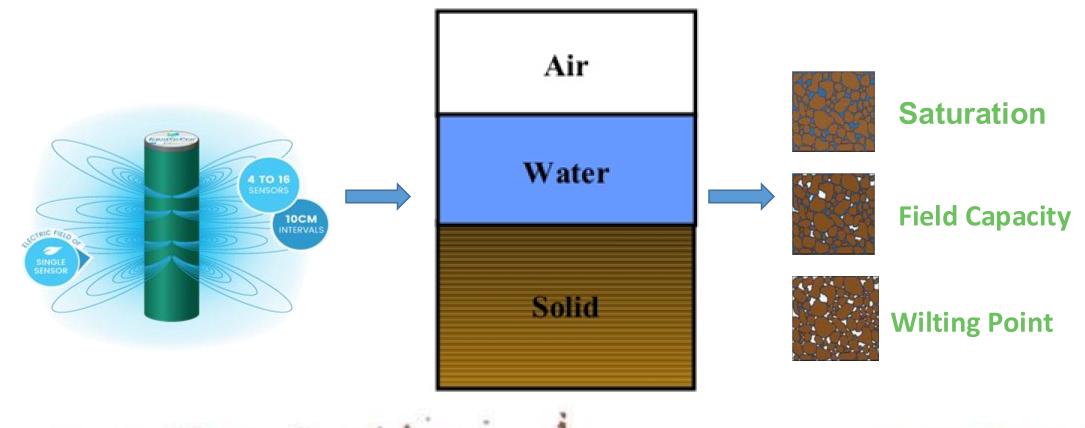


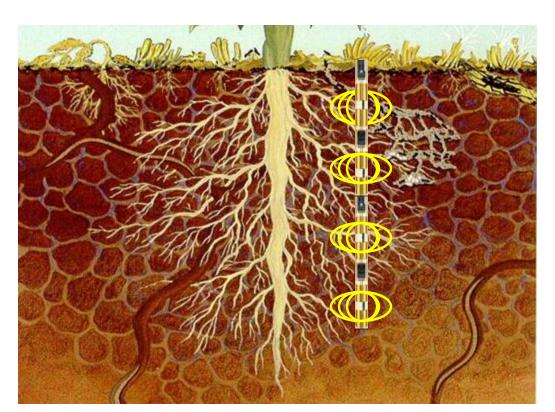
Types of sensors

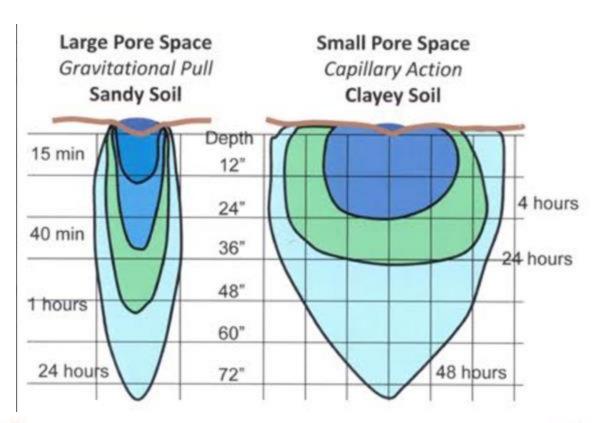
Sensor	Measures What?	How?
TDR	Volumetric Water Content	Electronic signals
Capacitance	Volumetric Water Content Electronic Sign	
Tensiometer	Water Potential	Tension
Gypsum Block	Water Potential	Tension

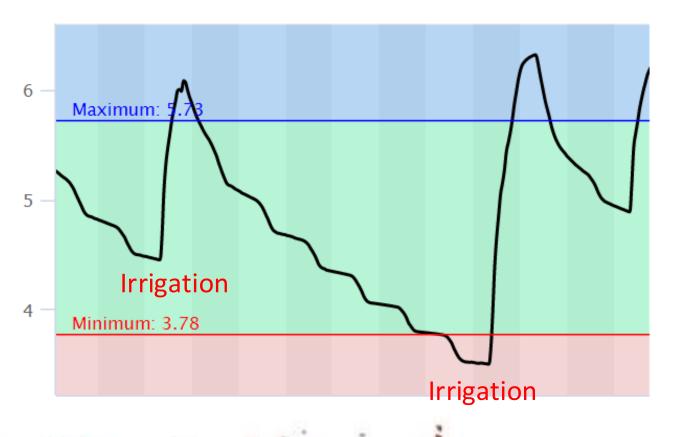


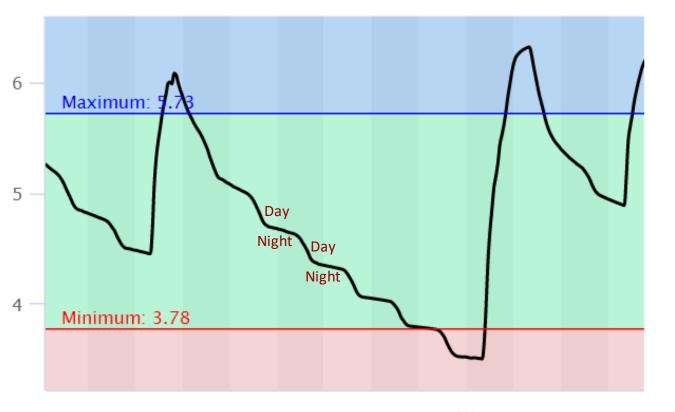
Water Volume - FDR

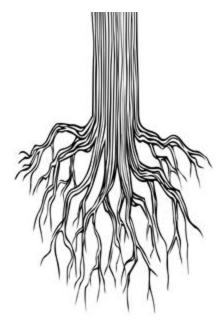

Direct Correlation

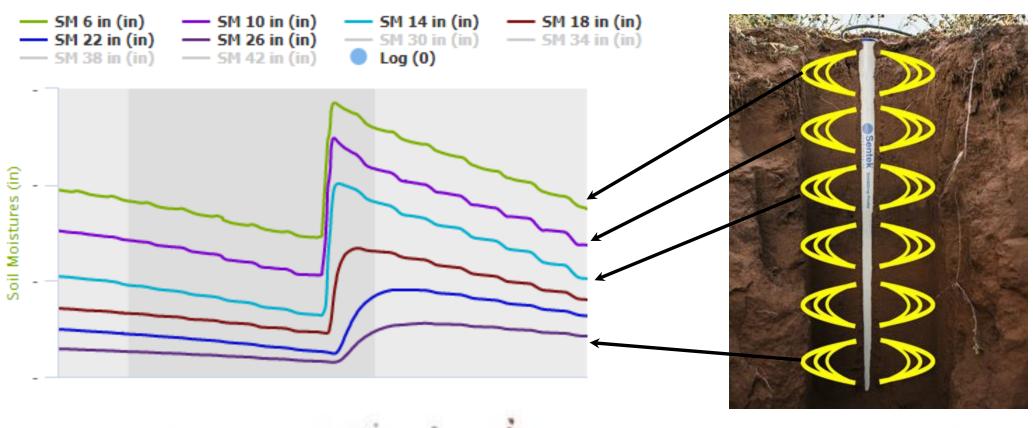


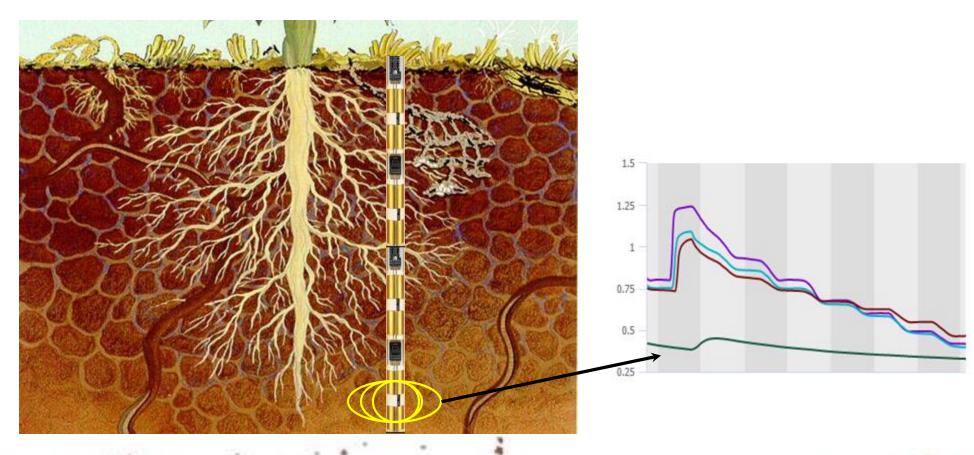

FDR - Frequency Domain Reflectometry


Volumetric Water Content (%)

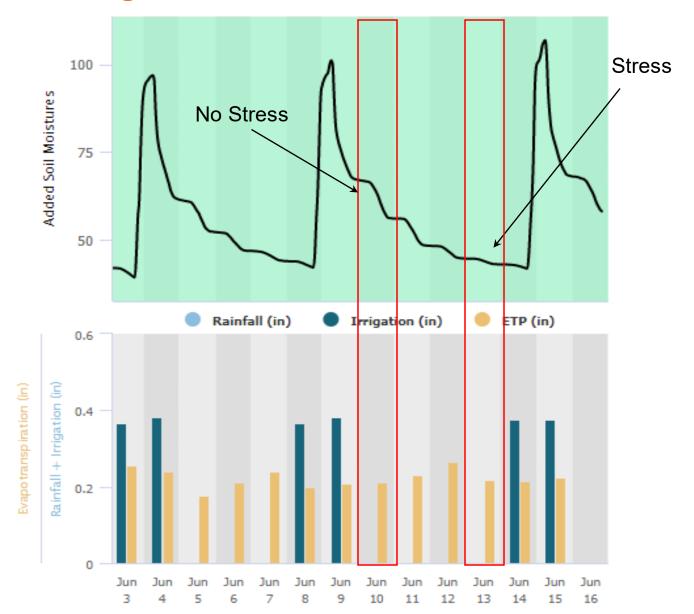



Irrigation Events

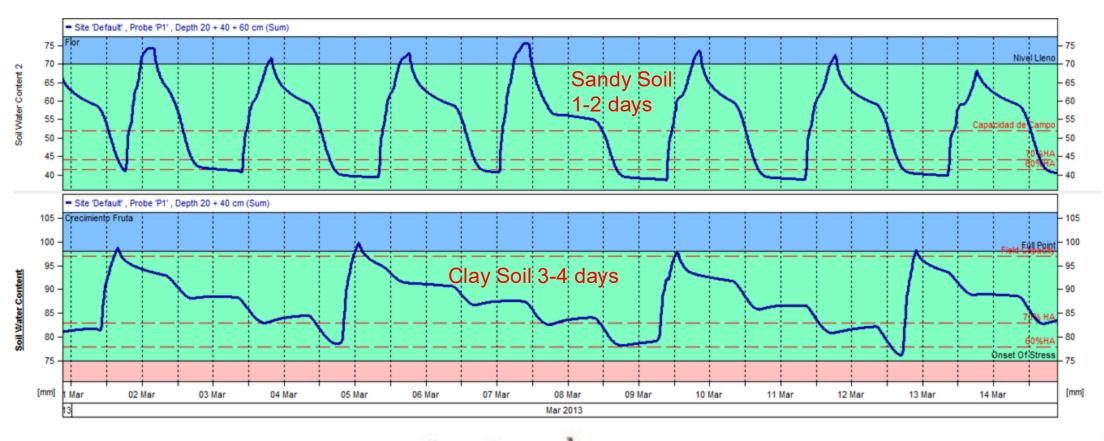

Daily/Night dynamics - root presence and activity



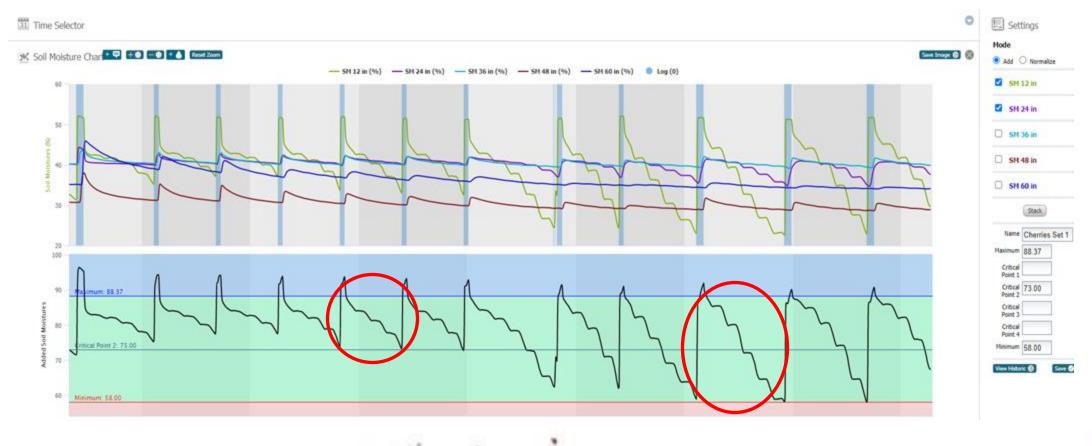
Infiltration rate and depth

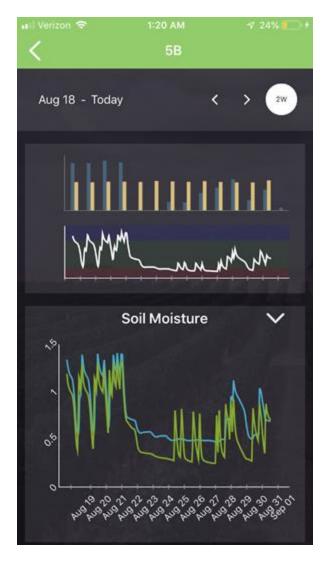

How long to irrigate?

Water dynamics in the soil



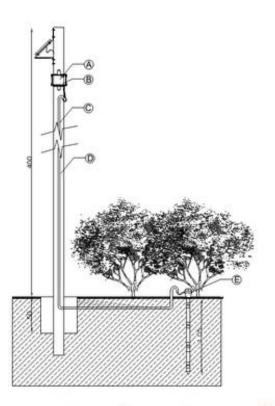
When to irrigate?

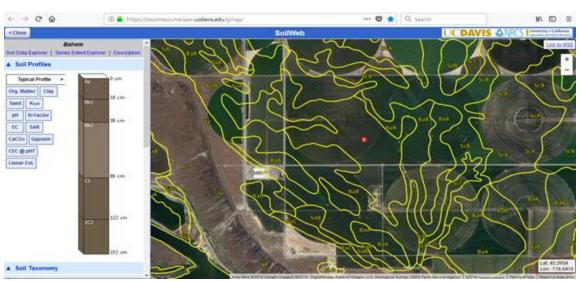



Different holding capacities of soils...

Optimize irrigation for better metabolism

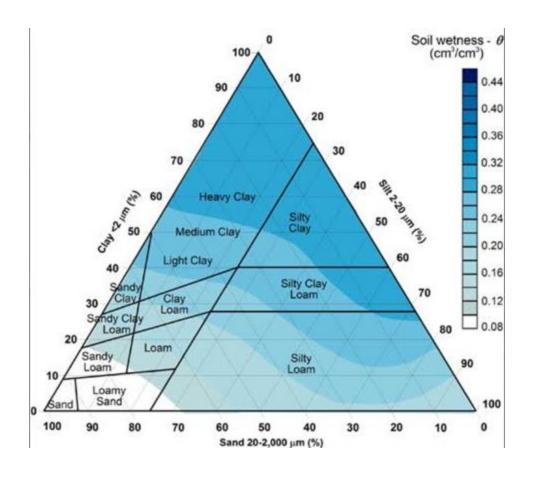
Optimize your irrigation operation





Proper installation and soil identification

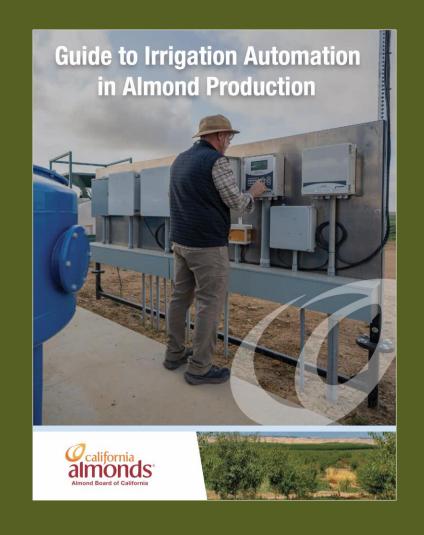
Attention to tree selection and distance from emitter

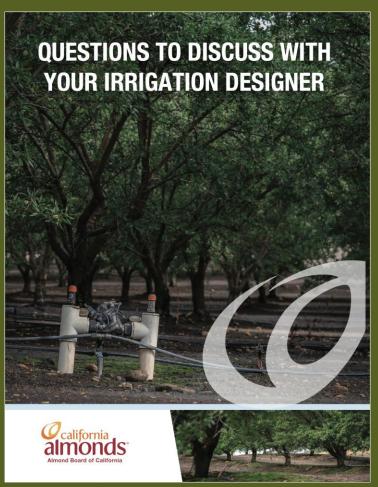



Ground truthing

Attention to the site! it is our navigation tool

Complimentary sensors





NEW IRRIGATION RESOUCRES

IRRIGATION

AUTOMATION Automation of our irrigation systems is the

next step to improvements in

irrigation efficiency.

EVOLUTION OF IRRIGATION TECHNIQUES FLOOD

DRYLAND

Leave it to nature

Simple & low cost

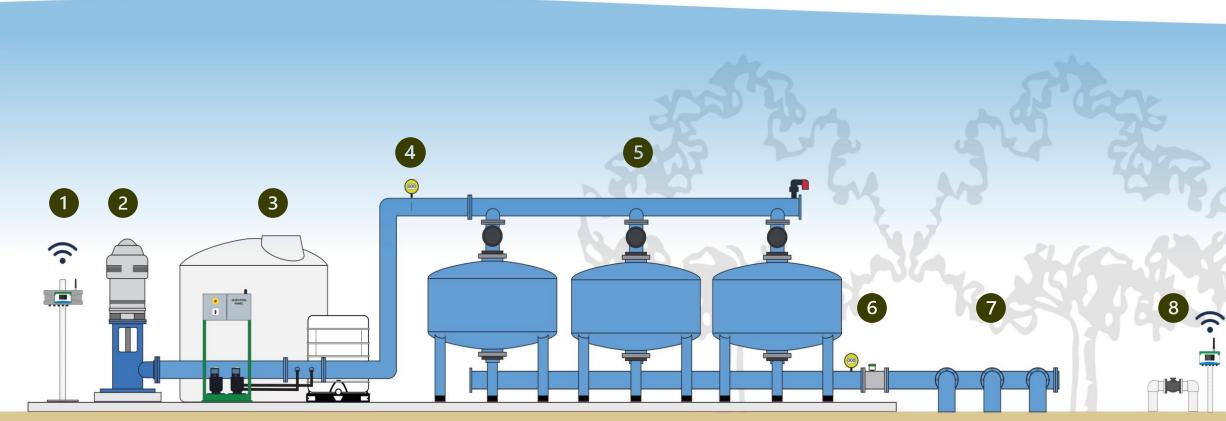
AUTOMATION

Matching timing to tree need and energy cost

HAND MOVE SPRINKLERS

Improved uniformity, tons of work

SOLID SET SPRINKLERS


DRIP & MICRO SPRINKLERS

Precise water supplied direct to the tree.

Continued improvement on uniformity without the labor.

PUMP STATION

autamatian

- 1 Controller
- 2 Pump On/Off
- 3 Fertigation
- System Pressure Pre/Post Filter
- 5 Filter Flush Control
- 6 Flow Meter Readings

- 7 Local Valves
- 8 In-Field Valves

Irrigation automation

TORO Simple Timeclock

WiseConn
Up to 10 Valves,
expandable to 100+.

Ranch Systems Up to 48 Valves **Netafim**Multi-language Interface
Up to 256 Valves

Pros & Cons

Work through the **values & challenges** of different systems.

Timer-Based Systems		
Pros	Cons	
Simple and inexpensive to install and maintain.	Inefficient if weather or soil moisture levels change unexpectedly.	
Reduces labor compared to manual irrigation with irrigations starting and stopping based on schedule automatically.	Risk of overwatering or underwatering.	
Does not require telemetry or connection to internet to operate.	No real-time adjustments based on plant needs and notifications.	
Works well when water demand is predictable.	Requires valves to be at pump station or wired connection to field valves.	

Timer-Based Systems

Fully Integrated IoT Systems		
Pros	Cons	
Maximizes water efficiency by applying irrigation only when needed, reducing waste.	High initial investment , including hardware, software, and installation costs.	
Optimizes yield potential by maintaining ideal soil moisture levels.	Requires reliable internet or cellular connectivity for seamless real-time operation.	
Reduces labor costs by automating irrigation scheduling and adjustments.	User training is necessary to fully utilize system capabilities and avoid operational errors.	
Allows remote access, enabling users to monitor and adjust irrigation from anywhere.	Ongoing costs, including cellular data fees, service visits, and software subscription costs for cloud-based services.	
Integrates with Al-powered predictive analytics, improving long-term water management.		
Enhances record-keeping for regulatory compliance and farm management decisions.		

Fully Integrated Systems

HOW DOES IT FIT IN

	Table of Departmental Needs			
Irrigation Automation for Almond Production				
Department / Role	Responsibilities	Needs / Requirements	Benefits of Automation	
Project Champion	Acting as the lead user and internal advocate for system adoption.	Comprehensive training, authority to coordinate across teams, communication tools, service contact responsibilities.	Smooth implementation, better adoption, bridge between technology providers and farm staff.	
Farm Management / Ownership	Strategic planning, budgeting, investment decisions.	ROI analysis, cost-benefit studies, system scalability, alignment with long-term orchard goals.	Reduced costs, improved yields, sustainable resource management, long-term profitability.	
Irrigation / Water Manager	Overseeing irrigation schedules & water allocation.	Training on controllers, access to soil moisture/weather data, other monitoring tools.	Compliance with water restrictions, optimized scheduling & efficient water use.	
Field Operations / Orchard Crew	Executing irrigation tasks, monitoring system operation, responding to field issues.	Training on valve/pump operations & easy-to-use interfaces.	Reduced manual labor, better coordination with farm activities.	
Fertility / Nutrition Manager	Overseeing fertilizer applications & nutrient management.	Integration with fertigation systems, precise control of application rates, training on injection equipment.	Improved nutrient efficiency, reduced waste, consistent tree nutrition.	
Maintenance / Service Team	Maintaining pumps, filters, valves, and sensors.	Notifications of system issues, diagnostic tools, training for troubleshooting and preventative care.	Less downtime, extended equipment life, reduced emergency repairs.	
Finance / Administration	Managing budgets, reporting, and compliance with cost-share programs.	Usage reports for groundwater & surface water use, access to rebate/funding opportunities, system usage reports.	Improved financial planning, potential grant/rebate funding, measurable ROI documentation.	

Automation has **different implications to different people** in the organization. Walk through how it fits for your teams.

RETURN ON INVESTMENT

Understanding the **Return on Investment** (ROI) is critical to success with automation.


Work through the areas and opportunities for maximizing the ROI.

Cost Savings	Increased Yield & Quality	
Labor Reduction	Automated Labor Costs	
 Less need for manual valve adjustments and monitoring. Lower labor costs over time, especially during peak irrigation periods. 	 Consistent watering reduces plant stress, leading to higher yields. Improved kernel quality due to steady nutrient uptake. 	
Water Savings	Better Nutrient Delivery	
 Precision irrigation reduces overwatering and waste. Potential reduction in water costs, especially in areas with tiered pricing. 	 Automation improves fertigation efficiency, reducing fertilizer waste and increasing nutrient absorption. 	
Energy Efficiency		
Reduced pump operation times lower electricity or fuel expenses.		

Risk Reduction	Sustainability	
Frost & Drought Protection	Environmental Benefits	
 Automated systems can react faster to temperature extremes. Reduced risk of yield loss due to drought stress or frost damage. 	 Reduced runoff and leaching. More sustainable farming practices improve industry reputation and may open up sustainability incentives or certifications. 	
Regulatory Compliance		
Improved reporting and tracking of water usage for compliance with SGMA and other regulations.		

· Automation can optimize irrigation timing to avoid peak energy rates.

QUESTIONS TO DISCUSS WITH YOUR IRRIGATION DESIGNER

Designing an orchard irrigation system is a 20+ year decision. As the grower, you should be the one leading the conversation.

Use this resource as a guide to the key talking points that will help shape your long-term planning.

YOU R PLAN

ORCHARD PLANNING

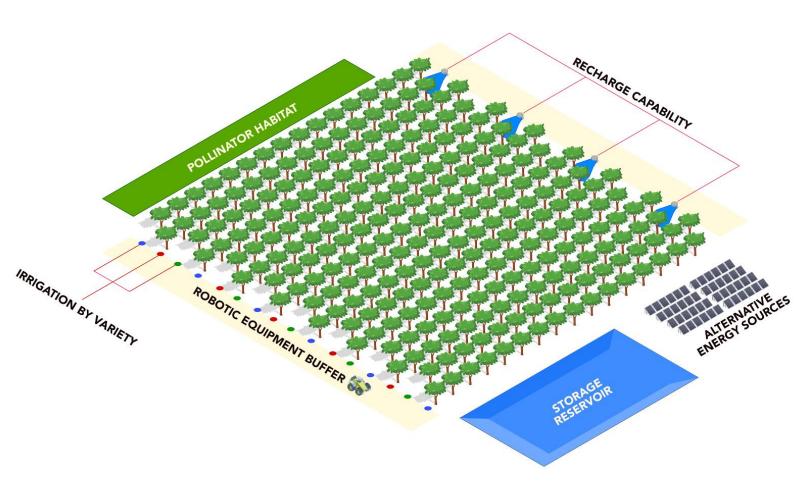
IRRIGATION METHOD

FROST PROTECTION

FILTRATION

OPERATIONAL COSTS

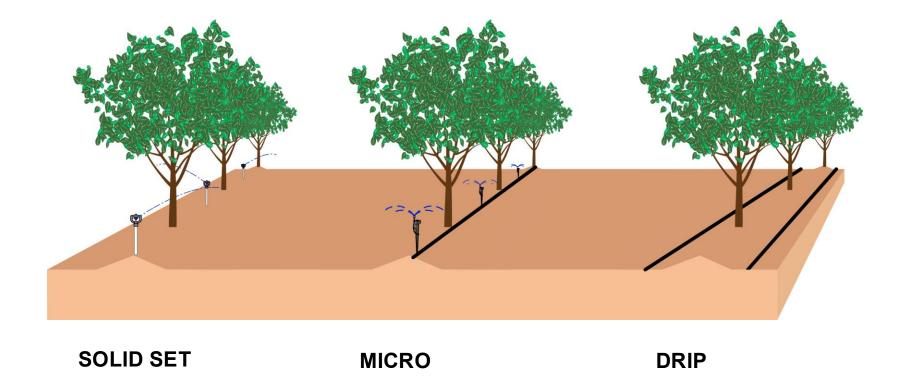
AUTOMATION & TECHOLOGY


WARRANTIES

INCENTIVES

ORCHARD PLANNING

- Harvest Direction
- Spacing
- Elevation
- Water Source & Volume
- Drive Roads
- Buffer Zones


IRRIGATION METHOD

System Type

- Solid Set
- Drip
- Micro-Sprinkler
- Dual Systems

Special Needs

- Frost Protection
- Flood for Recharge

FILTRATION

Screen Filter

Image – Morrill Industries

Automated Screen Filter

Image – Morrill Industries

Sand Media Filter

Image – Fresno Valves

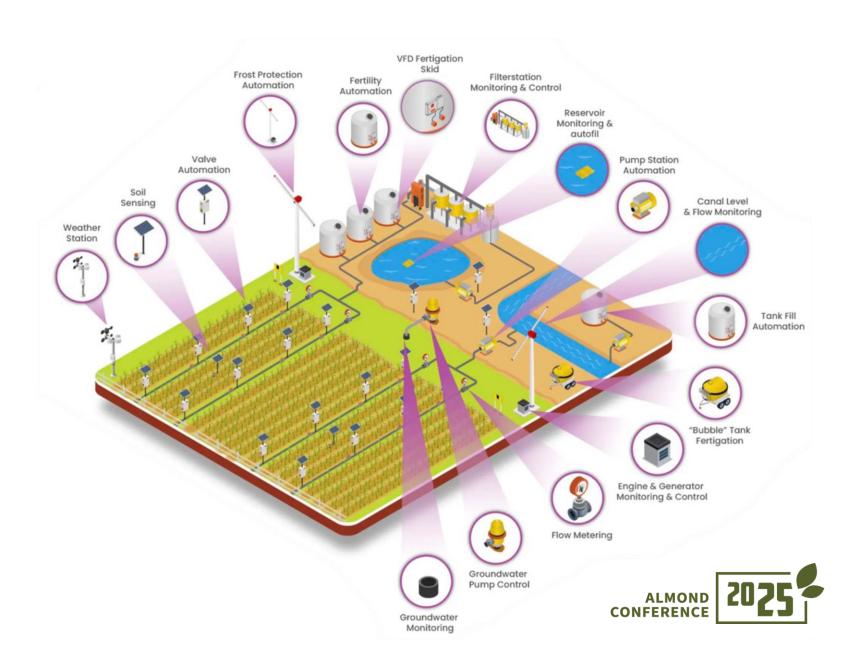
Disk Filter

Image – Rain Bird

ENERGY COSTS

What is it going to cost to run the system?

- Outline the total energy cost.
- Options for upsizing pipelines, will it **lower long-term cost**?
- Options for more efficient pumps and motors.

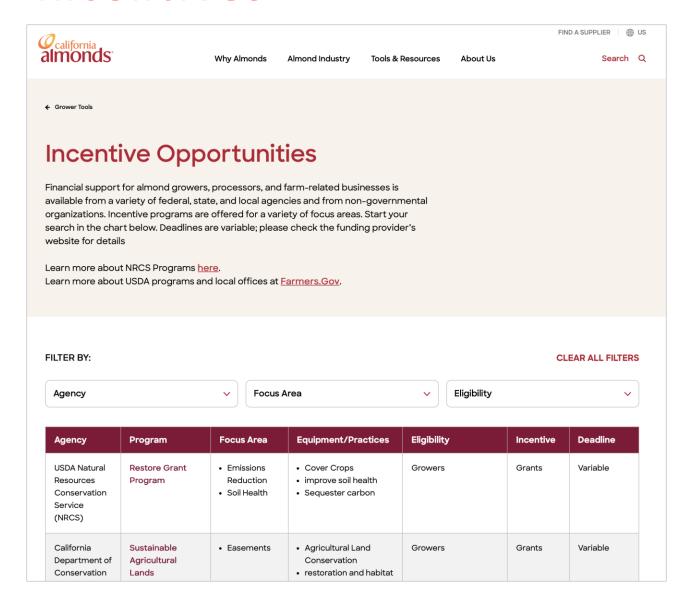

					Y LTD 2018 f this speadshee			©	www.talle.biz	rob@talle.	<u> </u>					
illemenco P	METRIC	s no responsi	onity for the ap	opiication oi	LEGEND		Active cell			AMORTISE	D COSTS - ELEC	TRIC PUMPING		CARBON EMISSION	NS - ELECTRIC	PUMPING
	PUMPING	COSTS - ELE	CTRIC			93.94	Derived data	(prote	cted)		ELECT	NPV				
								(,		7.00%	3.50%	Inflation	359,597	kWh/yr	
kWh/ML=	2.73	x	m head	refer	www.talle.b	iz/data.h	itml	for deri	vation	\$/yr	100,687					
	pump η	x motor η	x drive η		www.talle.b	iz/pump	units02.pdf									
				NOTE	: η = efficienc	У				Year	Annual Cost	NPV	Year	kg CO₂-e/kWh	State	Tonne CO ₂ /y
\$/yr =	kWh/ML	x	\$/kWh	x	ML/yr					1	100,687	97,282	1	0.84	NSW*	302.06
										2	107,735	197,854	2	1.09	VIC*	391.96
			m head		\$/kWh		ML/yr		\$/yr	3	115,277	301,827	3	0.78	QLD*	280.49
\$/yr =	2.73	x	70	x	0.280	x	1,400	=	100,687	4	123,346	409,316	4	0.53	SA*	190.59
			pump η	x	motor η	х	drive η*		kWh/ML	5	131,980	520,440	5	0.68	WA*	244.53
			0.8		0.93		1.00		256.85	6	141,219	635,322	6	0.12	TAS*	43.15
			<u>NOTE</u> : η = e	fficiency					\$/ML	7	151,104	754,088	7	0.67	NT*	240.93
			* If pump is belt driven, inset 0.9 for this value					71.92	8	161,681	876,871	8	0.67	Ave		
			If pump is gear driven, inset 0.95 for this value					kWh/yr	9	172,999	1,003,806	9	0.80	other	287.68	
									359,597	10	185,109	1,135,033	10			
										11	198,067	1,270,698	11	0.10	**NZ low	35.96
									Flow rate I/s	12	211,931	1,410,951	12	0.64	**NZ high	230.14
	CALCULATING kVA								22	13	226,767	1,555,946	13			
									ML/hr	14	242,640	1,705,845	14	For Australia:		
	l/s		m head						0.08	15	259,625	1,860,813	15	National Greenhou	ise Account F	acto

technology

What options for integrating technology in the design are there?

- Monitoring
- Control & Automation

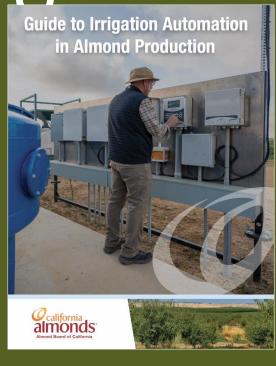
WARRANTIES

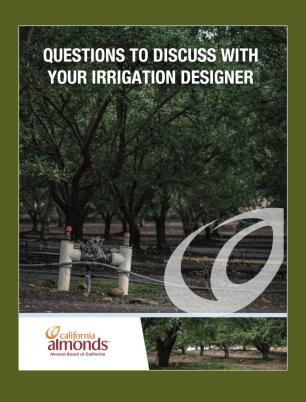

Often **overlooked but so important** & best to know at the start.

It's not just the hardware, **how is labor covered**?

Who provides warranties and what is covered?									
Item	Yrs Covered	Provider							
Irrigation pipeline components									
Filtration components									
Air vents									
Filtration components									
Air vents									
Control valves									
Automation									
Installation									

incentives




almonds.com/incentives

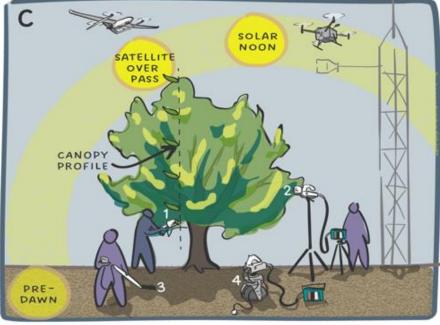
NEW ABC RESOURCES ONLINE

FOR YOU

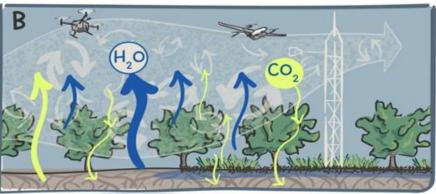
T-REX RESEARCH UPDATES

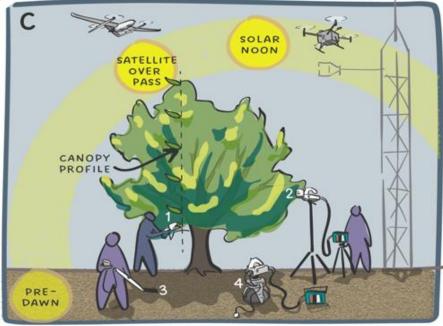
NEW IRRIGATION MANAGEMENT RESOURCES & THE USE OF ACTUAL EVAPOTRANSPIRATION

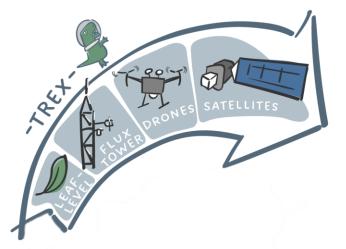
Kyle Knipper, PhD
Remote Sensing Scientist
Co-Lead of Crop Sensing Group
USDAARS, Davis, CA



Tree crop Remote sensing of Evapotranspiration experiment







BAMS Article

The Tree-Crop Remote Sensing of Evapotranspiration Experiment (T-REX)

A Science-Based Path for Sustainable Water Management and Climate Resilience

Nicolas Bambacho, Kyle Knipper, Andrew J. McElrone, Mallika Nocco, Alfonso Torres-Rua, William Kustas, Martha Anderson, Sebastian Castro, Erica Edwards, Moises Duran-Gomez, Andrew Gal, Peter Tolentino, Ian Wright, Matthew Roby, Feng Gao, Joseph Alfieri, John Prueger, Lawrence Hipps, and Sebastian Saa

KEYWORDS:

Carbon cycle; Evapotranspiration; Surface fluxes; Remote sensing; Agriculture; Water resources ABSTRACT: Water scarcity threatens agriculture in California. During the last two decades, historically severe droughts have led to severe water shortages. Under projected changes in climate, droughts of greater severity and duration will exacerbate this situation. California produces 80% of the world's almonds, which require consistent water supplies for irrigation. Almonds are the most commonly grown crop in California, covering nearly 1.4 million acres over about 8,000 farms. In response to these challenges, almond growers are considering a myriad of management strategies to save water and mitigate climate change. The Tree-Crop Remote Sensing of Evapotranspiration Experiment (T-REX) aims to identify water and orchard management opportunities to maximize water use efficiency and carbon sequestration in almonds and other woody perennial tree crops. The project combines satellite, uncrewed aerial vehicles, and proximal sensing technologies to retrieve key variables used to model surface fluxes and biophysical properties. We aim to advance our understanding of water management and cultural practices on water—carbon relationships in tree-perennial agroecosystems. Through new methods, such as evapotranspiration-based irrigation scheduling, even a modest 10% decrease in almond orchard irrigation across the state equates to about a third of the water in Lake Oroville, California's second-largest reservoir, at average levels. From a carbon perspective, almond orchards could sequester 8% of the state's current greenhouse gas emissions by transitioning toward climate-smart practices. As such, the almond industry is uniquely positioned to curb water use and contribute to climate change mitigation while maintaining economic viability of almond production. An overview of initial results related to evapotranspiration observational and modeling uncertainty and carbon sequestration potential are presented in this article.

The Tree-Crop Evapotranspira

A Science-Based Path for

Nicolas Bambacho, Kyle Kr Alfonso Torres-Rua, William Moises Duran-Gomez, And Feng Gao, Joseph Alfieri, J

KEYWORDS:

Carbon cycle; Evapotranspiration; Surface fluxes; Remote sensing; Agriculture; Water resources

challe mitiga aims and control to mo mana Throu decres Orovil orchaclimat control An ovand control and control control

ABST

sever

great

almor

growi

Using ALEXI-DisALEXI for estimation of satellitederived water use in a California almond orchard under spatially heterogeneous conditions

K. Knipper¹, N.E. Bambach², M.C. Anderson³, Y. Yang⁴, W.P. Kustas³, A.J. McElrone^{5,6}, M.A. Nocco², A. Torres-Rua⁷, F. Gao³, C. Hain⁸, S.J. Castro⁵, O. Crompton³ and S. Saa⁹

¹USDA, ARS, Sustainable Agricultural Water Systems Unit, Davis, CA, USA; ²University of California, Davis, Department of Land, Air, and Water Resources, Davis, CA, USA; ³USDA, ARS, Hydrology and Remote Sensing Lab, Beltsville, MD, USA; ⁴Usissispipi State University, Department of Forestry, Mississippi State, MS, USA; ⁵University of California, Davis, Department of Viticulture and Enology, Davis, CA, USA; ⁶USDA, ARS, Crops Pathology and Genetics Lab, Davis, CA, USA; ⁷Utlah State University, Department of Civil and Environmental Engineering, Logan, UT, USA; ⁸NASA Marshall Space Flight Center, Huntsville, AL, USA; ⁹Almond Board of California, Agricultural Research, Modesto, CA, USA.

Abstract

A study was carried out to evaluate modifications to the ALEXI (Atmosphere-Land Exchange Inverse) and DisALEXI (associated disaggregation technique) modeling framework to estimate water use equivalent to actual evapotranspiration (ETa) for a drip-irrigated almond orchard located in the Central Valley Region of California, USA. Modifications included the creation of a "synthetic" ALEXI ETa by redistributing coarse resolution (4 km) ALEXI ETa to higher spatial resolutions (2, 1, 0.5 km) using leaf area index derived from Harmonized Landsat and Sentinel-2 data sets. This was done to provide more representative estimates of ETa for DisALEXI when applied over thermally heterogeneous landscapes. For the estimation of ET, using ALEXI/DisALEXI. 26 satellite images (Landsat 8 OLI/TIRS and Landsat 9 OLI-2/TIR-2) acquired during clear sky days were used during 2022. The performance of synthetic ALEXI and subsequently DisALEXI was evaluated using measurements of ETa from an Eddy covariance system (EC). Analysis indicated that synthetic ALEXI provided more representative ETa estimates when applied over a region where a 4 km ALEXI pixel included mostly barren land and a small percentage of irrigated agriculture. The synthetic ALEXI version at 1 km performed best when used in DisALEXI and compared to observed ETa. However, the difference in mean absolute error remained <0.2 mm day-1 between approaches, suggesting Landsat-scale input to DisALEXI remains the most important factor in the ALEXI/DisALEXI modeling scheme.

Keywords: remote sensing, satellite, evapotranspiration, advection, T-REX

INTRODUCTION

Water availability is an endemic challenge for farmers in California, USA. The last decade is a prime example, with several drought years leading to the current unprecedented water shortages. Climate-induced drought of greater severity and length will likely continue to exacerbate these shortages. This lack of water availability is already causing the continuation of the production and left follows in propagation of the production and left follows in the production and left follows in production and left follows in production and left follows in the production

The Tree-Crop Evapotranspira

A Science-Based Path for

Nicolas Bambacho, Kyle Kr Alfonso Torres-Rua, William Moises Duran-Gomez, And Feng Gao, Joseph Alfieri, J

KEYWORDS:

Carbon cycle; Evapotranspiration; Surface fluxes; Remote sensing; Agriculture; Water resources

growi challe mitig aims and o satell to mo mana Throu decre Orovi orcha clima contr An ov and o

ABST

sever

great

almor

Using ALEXI-Dis. derived water u under spatially

K. Knipper¹, N.E. Bambach² M.A. Nocco², A. Torres-Rua

¹USDA, ARS, Sustainable Agrico Department of Land, Air, and W: Beltsville, MD, USA; ⁴Mississippi of California, Davis, Departmeni Genetics Lab, Davis, CA, USA; ⁷U UT, USA; ⁸NASA Marshall Space Research, Modesto, CA, USA.

Abstract

A study was carried Exchange Inverse) and framework to estimate drip-irrigated almond or Modifications included the resolution (4 km) ALEXI index derived from Hari provide more represen thermally heterogeneous 26 satellite images (Lane clear sky days were us subsequently DisALEXI covariance system (EC) representative ET_a estin included mostly barren synthetic ALEXI version to observed ETa. Howev day-1 between approach most important factor in

Keywords: remote sensing

INTRODUCTION

Water availability is a is a prime example, with s shortages. Climate-induce exacerbate these shortage

Agricultural and Forest Meteorology 355 (2024) 110146

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

A comparative analysis of OpenET for evaluating evapotranspiration in California almond orchards

Kyle Knipper^{a,*}, Martha Anderson^b, Nicolas Bambach^c, Forrest Melton^{d,e}, Zac Ellis^f, Yun Yang^g, John Volk^b, Andrew J. McElrone^{c,f}, William Kustas^g, Matthew Roby^g, Will Carrara^{d,e}, Sebastian Castro^e, Ayse Kilic^f, Joshua B. Fisher^k, Anderson Ruhoff^f, Gabriel B. Senay^m, Charles Morton^h, Sebastian Saa^m, Richard G. Allen^o

- a USDA ARS Sustainable Agricultural Water Systems, Davis, CA, United States
- b USDA ARS Hydrology and Remote Sensing Lab, Beltsville, MD, United States
 c University of California Davis, Davis, CA, United States
- d NASA Ames Research Center, Moffett Field, CA, United States
- NASA Ames Research Center, Moffett Field, CA, United States
 California State University, Monterey Bay, Seaside, CA, United States
- ^e California State University, Monterey Bay, Seaside, CA, United States
 ^f Olam Food Ingredients, Fresno, CA, United States
- Olam Food Ingredients, Fresno, CA, United States
 Mississippi State University, Department of Forestry, Mississippi State, MS, United States
- h Desert Research Institute, Reno, NV, United States
- Desert Research Institute, Reno, NV, United States
 USDA ARS Crops Pathology and Genetics Research, Davis, CA, United States
- University of Nebraska-Lincoln, Lincoln, NE, United States
- k Chapman University, Schmid College of Science and Technology, Irvine, CA, United States
- Universidade Federal do Rio Grande de Sul, Porto Alegre, RS, Brazil

 "U.S. Geological Survey Earth Resources Observation and Science Center, North Central Climate Adaptation Center, Fort Collins, CO, United States
- ^m U.S. Geological Survey Earth Resources Observation and Science Center
 ⁿ Almond Board of California, Modesto, CA, United States
- ° (ret) University of Idaho, Kimberly, ID, United States

ARTICLEINFO

ELSEVIER

Keywords: Evapotranspiration OpenET Remote sensing Water managemen Irrigation Almond

ABSTRACT

The almond industry in California faces water management challenges that are being exacerbated by droughts, climate change, and groundwater sustainability legislation. The Tree-crop Remote sensing of Evapotranspiration eXperiment (T-REX) aims to explore opportunities to improve precision irrigation management for woody perennial cropping systems. Almond orchards in the California Central Valley were equipped with eddy covariance flux measurements to evaluate satellite remote sensing-based evapotranspiration (RSET) models. OpenET provides high-resolution (30-m spatial and daily temporal) RSET data, synthesizing decades of research for practical water management. This study provides an evaluation of OpenET performance at six almond sites covering a large range in soils, age, and variety. It also compares OpenET ensemble evapotranspiration (ET) data with applied irrigation and precipitation records over an additional 148 almond orchards located in the Central Valley of California. Results show OpenET models, including the ensemble ET value, produced reasonable and actionable ET values, with overall coefficient of determination (R2) and mean absolute error values of 0.73- and 0.95-mm d^{-1} at the daily time step, respectively. However, given the temporal sampling of Landsat (8-day revisit) and the interpolation methods used, the assessed ET models had difficulty in capturing short-term variability in almond ET; for example, the rapid decline in measured ET observed as a response to lack of irrigation preceding and during almond harvest. The study also drew attention to the spatial complexity in scenarios where irrigated orchards are surrounded by hot/dry areas, causing discrepancies between measured and modeled ET values. In comparison with irrigation records, OpenET ensemble ET was capable of quantifying water input (applied irrigation + precipitation) in almond orchards to within 13 % when evaluating monthly

The Tree-Crop Evapotranspira

A Science-Based Path for

Nicolas Bambacho, Kyle Ki Alfonso Torres-Rua, William Moises Duran-Gomez, An Feng Gao, Joseph Alfieri, J

KEYWORDS:

Carbon cycle; Evapotranspiration; Surface fluxes; Remote sensing; Agriculture; Water resources

grown challe mitiga aims and o satell to mo mana Throu decre Orovi orcha clima contr An ov and o

ABST

sever

great

almor

Using ALEXI-Disa derived water u under spatially

K. Knipper¹, N.E. Bambach² M.A. Nocco², A. Torres-Rua

¹USDA, ARS, Sustainable Agrico Department of Land, Air, and W: Beltsville, MD, USA; ⁵Mississippi of California, Davis, Departmeni Genetics Lab, Davis, CA, USA; ⁷U UT, USA; ⁸NASA Marshall Space Research, Modesto, CA, USA.

Abstract

A study was carried Exchange Inverse) and framework to estimate drip-irrigated almond or Modifications included the resolution (4 km) ALEXI index derived from Hari provide more represen thermally heterogeneous 26 satellite images (Lane clear sky days were us subsequently DisALEXI covariance system (EC) representative ET_a estin included mostly barren synthetic ALEXI version to observed ETa. However day-1 between approach most important factor in

Keywords: remote sensing

INTRODUCTION

Water availability is a is a prime example, with s shortages. Climate-induce exacerbate these shortage

ELSEVIER

Agricu

A comparative analysis of Oper California almond orchards

Kyle Knipper^{a,*}, Martha Anderson^b, N Yun Yang⁸, John Volk^h, Andrew J. Mc Will Carrara ^{d,e}, Sebastian Castro^c, Ays Gabriel B. Senay^m, Charles Morton^h, S

- ^a USDA ARS Sustainable Agricultural Water Systems, Davis, CA, Uni
 ^b USDA ARS Hydrology and Remote Sensing Lab, Beltsville, MD, Uni
- ^c University of California Davis, Davis, CA, United States
 ^d NASA Ames Research Center, Moffett Field, CA, United States
 ^e California State University, Monterey Bay, Seaside, CA, United States
 ^f Olam Food Ingredients, Fresno, CA, United States
- 8 Mississippi State University, Department of Forestry, Mississippi Stath Desert Research Institute, Reno, NV, United States
- ¹ USDA ARS Crops Pathology and Genetics Research, Davis, CA, Uni ³ University of Nebraska-Lincoln, Lincoln, NE, United States ³ Chapman University, Schmid College of Science and Technology, Ir
- Universidade Federal do Rio Grande de Sul, Porto Alegre, RS, Braz
 U.S. Geological Survey Earth Resources Observation and Science Co
- ⁿ Almond Board of California, Modesto, CA, United States
 ^o (ret) University of Idaho, Kimberly, ID, United States

ARTICLE INFO

Keywords
Evapotranspiration
OpenET
Remote sensing
Water management
Irrigation
Almond

eXperi perann covaria OpenE for pra coveris with a Valley actions revisit variab gation where models water ...

climat

The Journal of Technology Transfer (2025) 50:209-226 https://doi.org/10.1007/s10961-024-10093-7

Estimating the value of satellite-derived measurements of evapotranspiration to inform irrigation scheduling in California almond orchards

Daniel Lapidus 10 - Caleb Milliken 1 - Kyle Knipper² - Sebastian Saa³ - Tom Devol³ - William Kustas⁴ - Andrew J. McElrone^{5,6} - Michael Gallaher 1 - Nicolas Bambach⁶ - Martha Anderson⁴

Accepted: 30 March 2024 / Published online: 22 May 2024

The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Advances in satellite remote sensing have led to the development of improved methods and tools for calculating evapotranspiration (ET), allowing for improved irrigation scheduling. Researchers have been working closely with industry groups for the last decade on developing an "ET Toolkit" that could be used operationally to improve irrigation scheduling for specialty crops in California's increasingly drought-prone Central Valley. A unique collaboration between government and academic researchers and the Almond Board of California aimed to develop and refine the ET Toolkit to improve water use efficiency through irrigation scheduling for almond growers. In this study, the monetary value of applying the ET Toolkit to improve water use efficiency through irrigation scheduling for almonds is estimated. Benefits are valued by comparing existing irrigation scheduling methods, which rely on calculating crop ET in grower fields based on nearby weather station measurements, to future adoption of a field-scale satellite-based actual ET tool. As publicly available field-scale information has only recently come on-line through OpenET, the benefits estimated are prospective. Two valuations are conducted: one that captures private benefits to farmers, and another that captures the economic value for all water users based on the price that buyers are paying in active California water markets. Given assumptions on scaling pathways and drought's impact on values of water, the average annual water savings are estimated to be 241,000 acre-feet, and value to farmers is estimated to be \$45.5 M, while economic benefits reach \$127.6 M over the period 2028-2033.

 $\textbf{Keywords} \ \ Remote \ sensing \cdot \ Actual \ evapotranspiration \cdot Irrigation \ scheduling \cdot \ Water \ efficiency \cdot \ Economic \ valuation \cdot \ Agriculture$

Extended author information available on the last page of the article

The Tree-Crop Evapotranspira

A Science-Based Path for

Nicolas Bambacho, Kyle Kı Alfonso Torres-Rua, William Moises Duran-Gomez, An Feng Gao, Joseph Alfieri, J

KEYWORDS:

Carbon cycle; Evapotranspiration; Surface fluxes; Remote sensing; Agriculture; Water resources

growi challe mitig aims and o satell to mo mana Throu decre Orovi orcha clima contr An ov and o

ABST

sever

great

almor

Using ALEXI-Dis. derived water u under spatially

K. Knipper¹, N.E. Bambach² M.A. Nocco², A. Torres-Rua

¹USDA, ARS, Sustainable Agric Department of Land, Air, and W Beltsville, MD, USA; ⁴Mississippi of California, Davis, Departmen Genetics Lab, Davis, CA, USA; ⁷U UT, USA; ⁸NASA Marshall Spac Research, Modesto, CA, USA.

Abstract

A study was carried Exchange Inverse) and framework to estimate drip-irrigated almond or Modifications included the resolution (4 km) ALEXI index derived from Hari provide more represen thermally heterogeneous 26 satellite images (Lane clear sky days were us subsequently DisALEXI covariance system (EC) representative ET_a estin included mostly barren synthetic ALEXI version to observed ETa. Howev day-1 between approach most important factor in

Keywords: remote sensing

INTRODUCTION

Water availability is a is a prime example, with s shortages. Climate-induce exacerbate these shortage

Disa er u ılly

ELSEVIER

Agricu

A comparative analysis of Oper California almond orchards

Kyle Knipper^{a,*}, Martha Anderson^b, N Yun Yang⁸, John Volk^h, Andrew J. Mo Will Carrara ^{d,e}, Sebastian Castro^c, Ays Gabriel B. Senay^m, Charles Morton^h, S

^a USDA ARS Sustainable Agricultural Water Systems, Davis, CA, Unib USDA ARS Hydrology and Remote Sensing Lab, Beltsville, MD, Unic University of California Davis, Davis, CA, United States

^d NASA Ames Research Center, Moffett Field, CA, United States
^e California State University, Monterey Bay, Seaside, CA, United State Olam Food Ingredients, Fresno, CA, United States

⁸ Mississippi State University, Department of Forestry, Mississippi Stat ^b Desert Research Institute, Reno, NV, United States ¹ USDA ARS Crops Pathology and Genetics Research, Davis, CA, Uni ¹ University of Nebraska-Lincoln, Lincoln, NE, United States

Chapman University, Schmid College of Science and Technology, Ir
 Universidade Federal do Rio Grande de Sul, Porto Alegre, RS, Braz
 U.S. Geological Survey Earth Resources Observation and Science C

ⁿ Almond Board of California, Modesto, CA, United States
^o (ret) University of Idaho, Kimberly, ID, United States

ARTICLE INFO

Keywords
Evapotranspiration
OpenET
Remote sensing
Water management
Irrigation
Almond

covaria
OpenE
for pra
coverii
with a
Valley
action
0.95-m
revisit;
variabi)
gation
where
model
water

climat

eXperi

The Journal of Technology Transfer (2025) 50:209-2 https://doi.org/10.1007/s10961-024-10093-7

Estimating the value of satellite of evapotranspiration to inform California almond orchards

Daniel Lapidus ¹ · Caleb Milliken ¹ · Ky William Kustas ⁴ · Andrew J. McElrone ^{5,6} Martha Anderson ⁴

Accepted: 30 March 2024 / Published online: 22 May

© The Author(s), under exclusive licence to Springer

Abstract

Advances in satellite remote sensing has and tools for calculating evapotranspiration uling. Researchers have been working on developing an "ET Toolkit" that co scheduling for specialty crops in Califor A unique collaboration between government Board of California aimed to develop and ciency through irrigation scheduling for a of applying the ET Toolkit to improve v for almonds is estimated. Benefits are va methods, which rely on calculating crop station measurements, to future adoption publicly available field-scale information the benefits estimated are prospective. private benefits to farmers, and another users based on the price that buyers are assumptions on scaling pathways and di annual water savings are estimated to be mated to be \$45.5 M, while economic ben

Keywords Remote sensing · Actual evap efficiency · Economic valuation · Agricu

Extended author information available on the las

High-Resolution Actual Evapotranspiration in Almond Orchards by Integrating Physiological and TSEB Models

Karem Meza^a, Nicolas Bambach^a, Kyle Knipper^b, Mina Momayyezi^a, Andrew J. McElrone^{a,c}, Alfonso Torres-Rua^d, Moises Duran-Gomez^d, Sebastian Castro^a, Lawrence Hipps^e, William P. Krustas^g

^aDepartment of Viticulture and Enology, University of California, Davis, Davis, California, USA ⁸Sustainable Agricultural Water Systems Research Unit, ARS, USDA, Davis, California, USA ⁶Crops Pathology and Genetics Research, ARS, USDA, Davis, California, USA ⁶Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA ⁶Department of Plants, Soils, and Climate, Utah State University, Logan, Utah, USA ⁷Institute of Agricultural Sciences (CSIC), Tec4AGRO Group, Serrano 115B, 28006, Madrid, Spain ⁸Hydrology and Remote Sensing Jab. ARS, USDA Beltswille, Maryland, USA

13 Abstract

Spatial and temporal high-resolution thermal infrared (TIR) remote sensing systems are emerging as valuable tools for monitoring crop water use and stress. Thermal cameras onboard small uncrewed aerial systems (UAS) provide high spatial and temporal resolution TIR. Reliable high-resolution TIR imagery is a crucial input for remote sensing-based land surface energy balance models in mapping instantaneous actual evapotranspiration (ETa). Therefore, evaluating UAS-acquired TIR temperature correction and ETa upscaling method is needed to improve the accuracy of instantaneous and daily ETa, respectively. In this study, we applied a novel physiological-surface energy balance-based TIR temperature correction, a key input for the two-source energy balance (TSEB) model, in combination with a daily ET_a upscaling method, to estimate high-resolution ET_a at almond orchards in California. A coupled physiological model was developed and compared to in-situ physiological measurements of net CO₂ assimilation rate (A_n), stomatal conductance (g_s), and leaf temperature (T₁). The TSEB Priestley-Taylor (TSEB-PT) and contextual approach (TSEB-2T) models were applied to UAS imagery and proximal tower data, and their performance was compared with eddy covariance (EC) measurements. For ET_a to be useful for irrigation scheduling, upscaling methods based on solar radiation (R_s) and hourly LE based on TSEB-2T were evaluated using EC measurements. Results showed that the coupled physiological and surface energy balance model predicted T₁ in good agreement with observed canopy radiometric surface temperature (T_{rad}), with the highest R² (0.92 - 0.98) and the lowest RMSE (0.84-1.6°C). Applying physiological-surface energy balance-based TIR temperature correction to UAS-acquired TIR imagery improved LE estimates, reducing the MAE by 18.3%. The hourly LE based on the TSEB-2T upscaling method performed best when using instantaneous LE values between 11:00 and 13:00, with RMSE of 0.02 - 0.65 mm day⁻¹. This study demonstrates the potential to enhance the accuracy of high-spatial-resolution ET, estimates in cropping systems. supporting precision irrigation.

14 Keywords: Evapotranspiration, TSEB model, Almond orchards, TIR, UAS, Eddy covariance

15 1. Introduction

Increasing drought frequency has intensified the spatiotemporal disconnects between water supply and demand in many vital agricultural regions, raising concerns surrounding the future of food
and water security (Scanlon et al., 2023) Boser et al., 2024). Irrigation constitutes the largest use
of surface water and groundwater and many regions need to decrease their agricultural water use

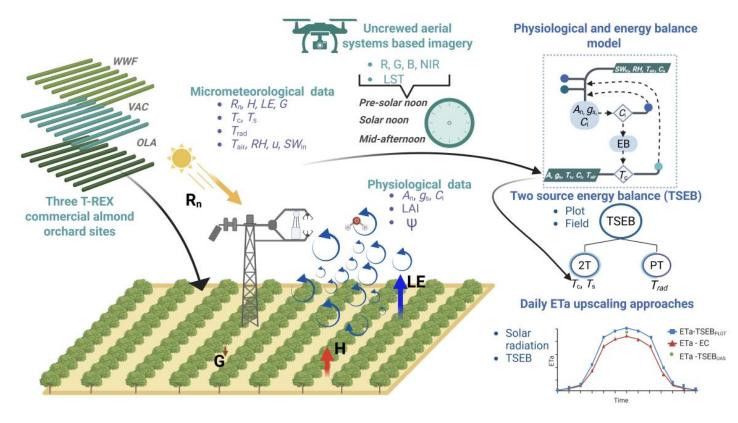
CURRENT FOCUS

• <u>Improve</u> remotely sensed modeling approaches in almond orchards

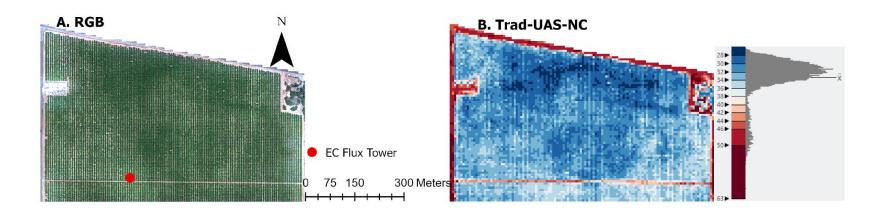
CURRENT FOCUS

<u>Improve</u> remotely sensed modeling approaches in almond orchards

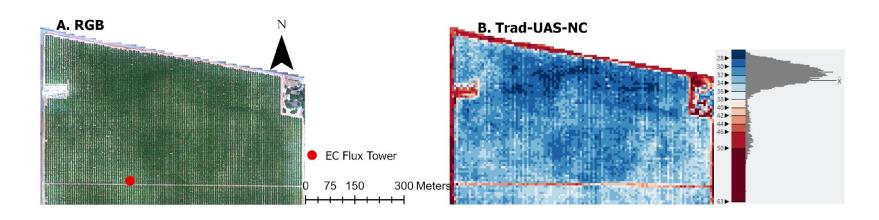
Forecast almond water use (actual ET) out 1 to 2 weeks

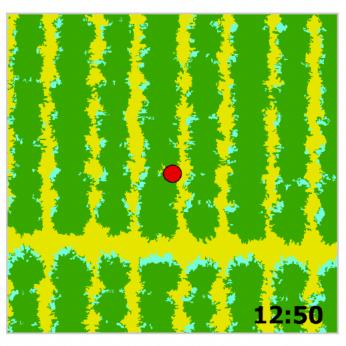

CURRENT FOCUS

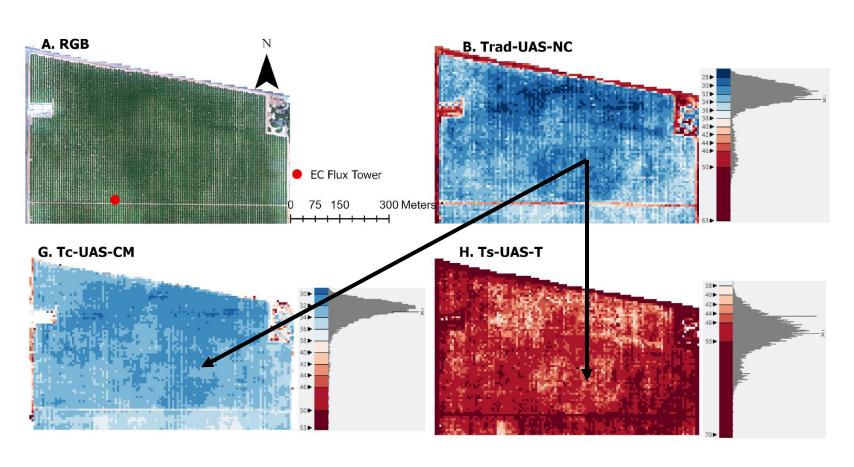
<u>Improve</u> remotely sensed modeling approaches in almond orchards

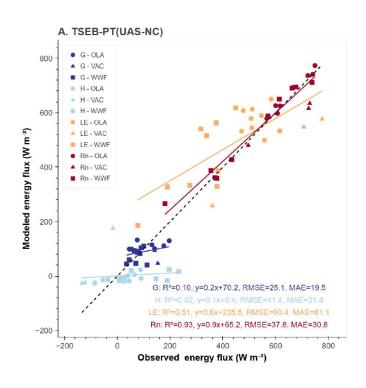

Forecast almond water use (actual ET) out 1 to 2 weeks

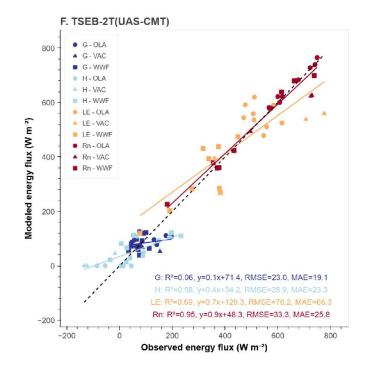
 <u>Deliver</u> decision-ready irrigation information to growers through early adopters



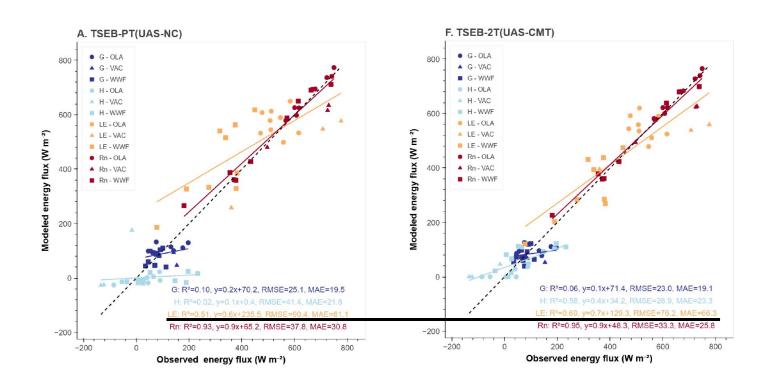


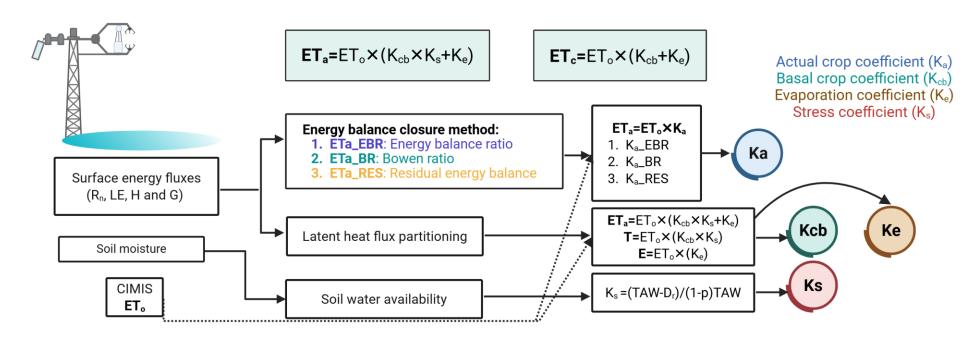


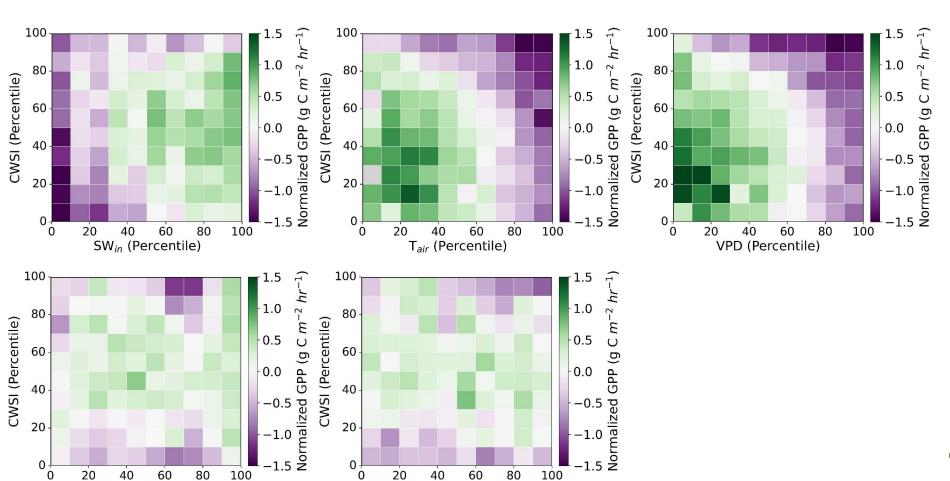

"High-Resolution Actual Evapotranspiration in Almond Orchards by Integrating Physiological and TSEB Models"



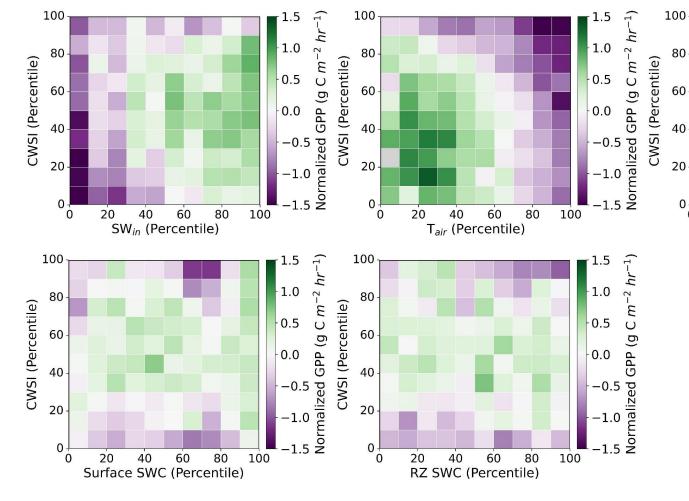
Apply correction that includes:


- 1) Net Leaf Photosynthesis
- 2) Stomatal Conductance
- 3) Leaf Temperature




"Evaluating Energy Balance Closure Adjustments for Estimating Actual Evapotranspiration and Crop Coefficients"

Surface SWC (Percentile)


"Independent Impacts of Climatic Drivers on GPP for Multiple Crop Water Stress Scenarios" Saroj Dash, PhD

RZ SWC (Percentile)

"Independent Impacts of Climatic Drivers or GPP or Multiple Crop Water Stress Scenarios" Saroj Dash, PhD

Gross Primary Productivity: how fast the trees are turning sunlight and CO₂ into sugars through photosynthesis (CARBON IN).

1.0

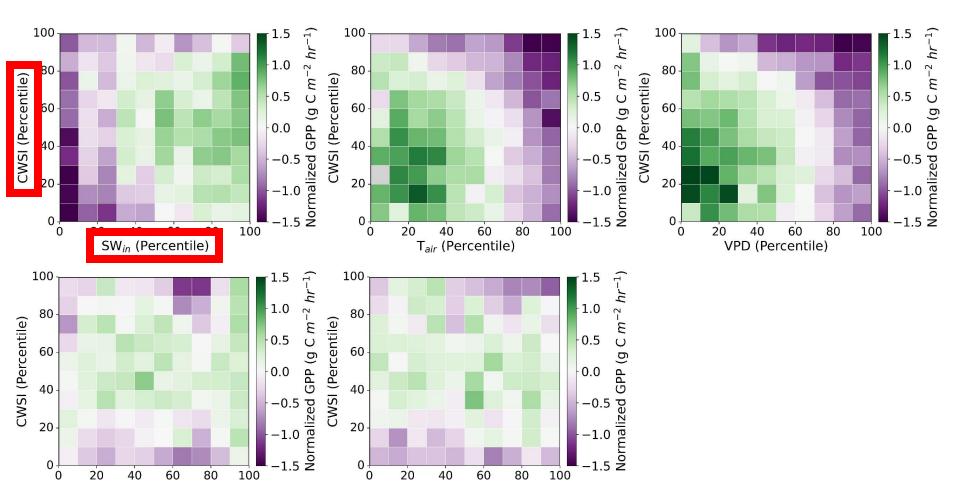
0.5

0.0

100

60

40

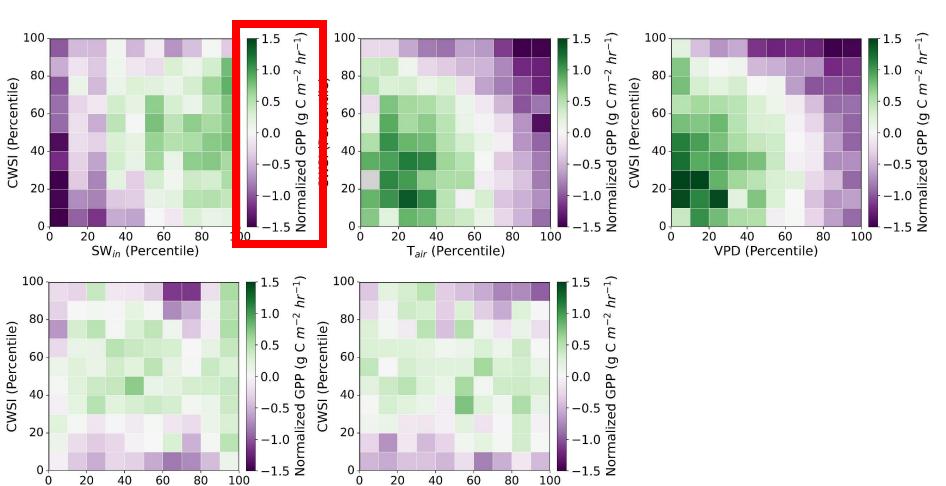

VPD (Percentile)

GPP (g

That carbon is what builds wood, leaves, and ultimately fills the nuts, so when weather or stress slow GPP down, we're effectively shrinking potential for yield.

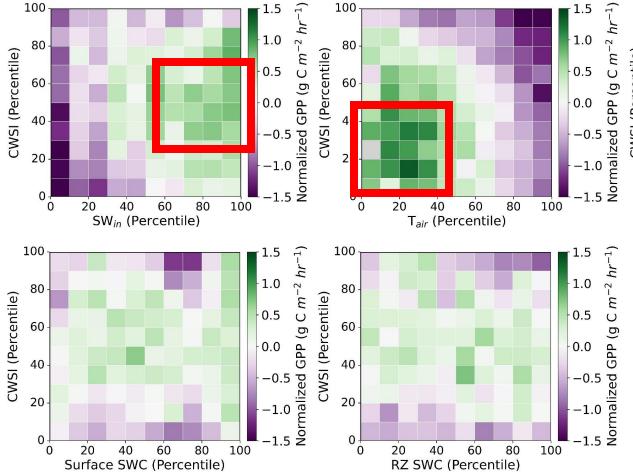
Surface SWC (Percentile)

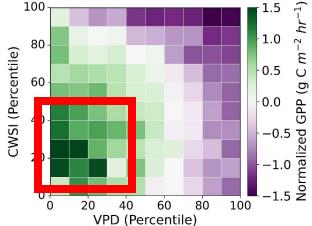
"Independent Impacts of Climatic Drivers on GPP for Multiple Crop Water Stress Scenarios" Saroj Dash, PhD



RZ SWC (Percentile)

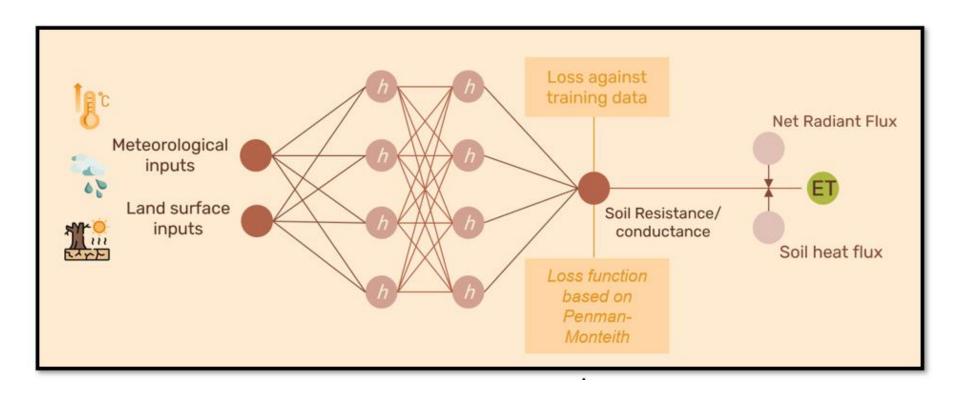
Surface SWC (Percentile)


"Independent Impacts of Climatic Drivers on GPP for Multiple Crop Water Stress Scenarios" Saroj Dash, PhD



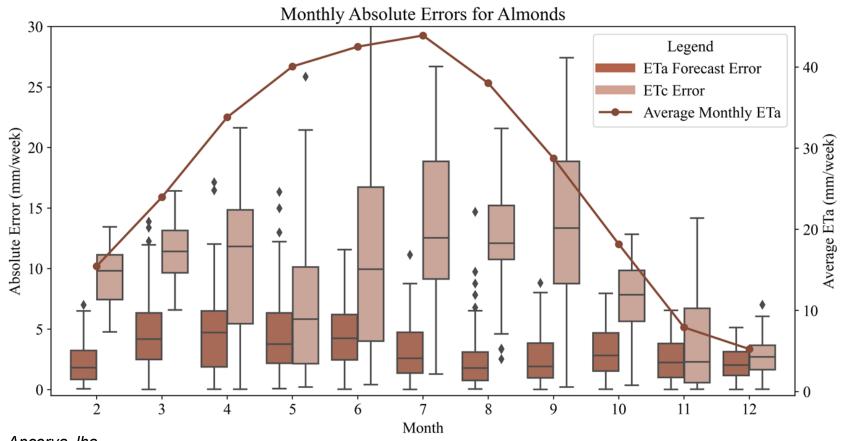
RZ SWC (Percentile)

"Independent Impacts of Climatic Drivers on GPP for Multiple Crop Water Stress Scenarios" Saroj Dash, PhD


Atmosphere components enhances GPP at multiple crop stress level.

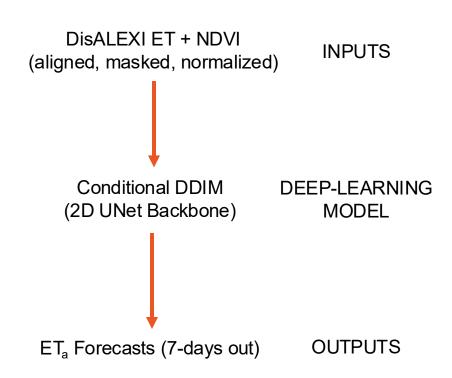
GPP
$$\uparrow$$
 CWSI < 30-70% SW_{in} > 80% T_a < 60% VPD < 50%.

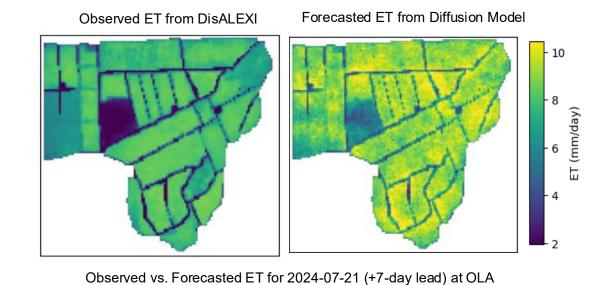
FORECAST


"Forecasting Actual Evapotranspiration with Deep Learning and OpenET: A Cast Study in California Almonds, Olives, and Vines"

FORECAST

"Forecasting Actual Evapotranspiration with Deep Learning and OpenET: A Cast Study in California Almonds, Olives, and Vines"

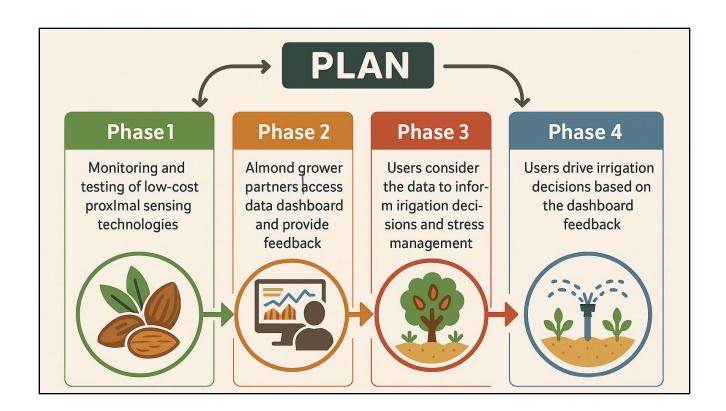




Apoorva Jha

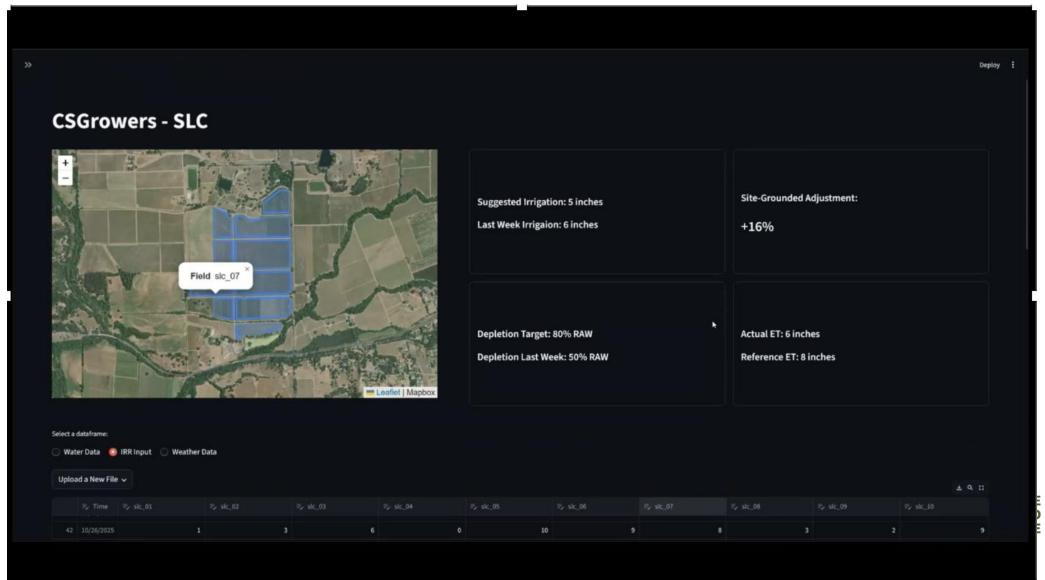
FORECAST

"Forecasting Actual Evapotranspiration with Deep Learning and OpenET: A Cast Study in California Almonds, Olives, and Vines"

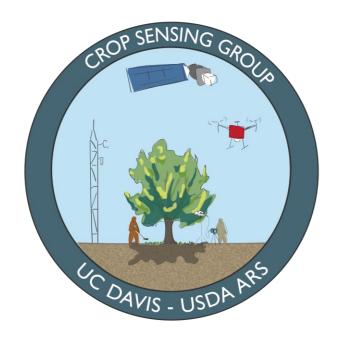


DELIVER

WET (Wavelet Evapotranspiration Tower) Network


- A tool to increase accuracy of near-real-time ET products for irrigation management

DELIVER



DELIVER

N.Bambach UCD

A.McElrone M.Anderson USDA -UCD USDA

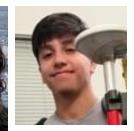
K.Knipper USDA

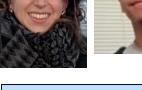
B.Kustas USDA

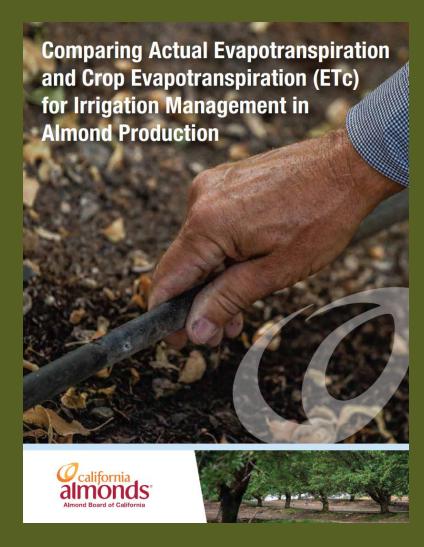
Students

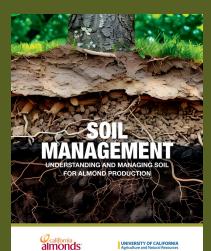
Ph.D.

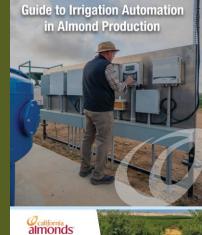
Researchers

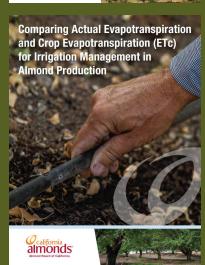



Data Science




NEW ABC RESOURCE FOR


YOU



NEW RESOURCES:Q&A:

